Skip to main content

A Bilevel Multi-parent Genetic Optimization Model for Flexible Assembly Line Balancing with Work-Sharing and Workstation Revisiting

  • Chapter
  • First Online:
Intelligent Decision-making Models for Production and Retail Operations
  • 984 Accesses

Abstract

This chapter addresses a flexible assembly line balancing (FALB) problem with work-sharing and workstation revisiting. The mathematical model of the problem is presented with the objectives of meeting the desired cycle time of each order and minimizing the total idle time of the assembly line. An optimization model is developed to handle the addressed problem, which comprises two parts. A bilevel multi-parent genetic optimization approach, bilevel genetic algorithm with multi-parent crossover, is proposed to determine the operation assignment to workstations and the task proportion of each shared operation being processed on different workstations. A heuristic operation routing rule is then presented to route the shared operation of each product to an appropriate workstation when it needs to be processed. A series of experiments are conducted based on industrial data to validate the proposed optimization approach. The experimental results demonstrate the effectiveness of the proposed approach to solve the FALB problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, E. J., & Ferris, M. C. (1994). Genetic algorithms for combinatorial optimization: the assembly line balancing problem. ORSA Journal on Computing, 6(2), 161–173.

    Article  MATH  Google Scholar 

  • Bäck, T. (1994). Selective pressure in evolutionary algorithms: A characterization of selection mechanisms. In Proceedings of the First IEEE Conference on Evolutionary Computation. Orlando, USA, IEEE Press.

    Google Scholar 

  • Bartholdi, J., & Eisenstein, D. (1996). A production line that balances itself. Operations Research, 44(1), 21–34.

    Article  MATH  Google Scholar 

  • Baybars, I. (1986). A survey of exact algorithms for the simple assembly line balancing problem. Management Science, 32(8), 909–932.

    Article  MathSciNet  MATH  Google Scholar 

  • Baykasoglu, A. (2006). Multi-rule multi-objective simulated annealing algorithm for straight and U type assembly line balancing problems. Journal of Intelligent Manufacturing, 17(2), 217–232.

    Article  MathSciNet  Google Scholar 

  • Beach, R., Muhlemann, A. P., Price, D. H. R., Paterson, A., & Sharp, J. A. (2000). A review of manufacturing flexibility. European Journal of Operational Research, 122(1), 41–57.

    Article  MATH  Google Scholar 

  • Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalized assembly line balancing. European Journal of Operational Research, 168(3), 694–715.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharjee, T. K., & Sahu, S. (1987). A critique of some current assembly line balancing techniques. International Journal of Operations & Production Management, 7(6), 32–43.

    Article  Google Scholar 

  • Carraway, R. L. (1989). A dynamic programming approach to stochastic assembly line balancing. Management Science, 35, 459–471.

    Article  MATH  Google Scholar 

  • Chaudhry, S., & Luo, W. (2005). Application of genetic algorithms in production and operations management: A review. International Journal of Production Research, 43(19), 4083–4101.

    Article  MATH  Google Scholar 

  • Chiu, C., & Hsu, P.-L. (2005). A constraint-based genetic algorithm approach for mining classification rules. IEEE Transactions on Systems, Man, and Cybernetics-Part C, 35(2), 205–220.

    Article  Google Scholar 

  • Eiben, A. E., Raue, P.-E., & Ruttkay, Z. (1994). Genetic algorithms with multiparent recombination. In Proceedings of the 3rd Conference on Parallel Problem Solving from Nature. Springer, New York.

    Google Scholar 

  • Erel, E., & Sarin, S. C. (1998). A survey of the assembly line balancing procedures. Production Planning & Control, 9(5), 414–434.

    Article  Google Scholar 

  • Faaland, B. H., Klastorin, T. D., Schmitt, T. G., & Shtub, A. (1992). Assembly line balancing with resource dependent task times. Decision Sciences, 23(2), 343–364.

    Article  Google Scholar 

  • Gokcen, H., & Erel, E. (1998). Binary integer formulation for mixed-model assembly line balancing problem. Computers & Industrial Engineering, 34(2), 451–461.

    Article  MATH  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Massachusetts: Addison-Wesley.

    MATH  Google Scholar 

  • Guo, Z. X., Wong, W. K., Leung, S. Y. S., Fan, J. T., & Chan, S. F. (2006). Mathematical model and genetic optimization for the job shop scheduling problem in a mixed- and multi-product assembly environment: A case study based on the apparel industry. Computers & Industrial Engineering, 50(3), 202–219.

    Article  Google Scholar 

  • Guo, Z. X., Wong, W. K., Leung, S. Y. S., Fan, J. T., et al. (2008). A genetic-algorithm-based optimization model for solving the flexible assembly line balancing problem with work sharing and workstation revisiting. IEEE Transactions on Systems, Man and Cybernetics Part C—Applications and Reviews, 38(2), 218–228.

    Article  Google Scholar 

  • Gutjahr, A. L., & Nemhauser, G. L. (1964). An algorithm for the line balancing problem. Management Science, 11(2).

    Google Scholar 

  • Haq, A., Rengarajan, K., & Jayaprakash, J. (2006). A hybrid genetic algorithm approach to mixed-model assembly line balancing. International Journal of Advanced Manufacturing Technology, 28(3–4), 337–341.

    Google Scholar 

  • Hopp, W., & Van Oyen, M. (2004). Agile workforce evaluation: A framework for cross-training and coordination. IIE Transactions, 36(10), 919–940.

    Article  Google Scholar 

  • Hopp, W., Tekin, E., & Van Oyen, M. (2004). Benefits of skill chaining in serial production lines with cross-trained workers. Management Science, 50(1), 83–98.

    Article  Google Scholar 

  • Jackson, J. R. (1956). A computing procedure for a line balancing problem. Management Science, 2(3), 261.

    Article  Google Scholar 

  • Khoo, L. P., & Alisantoso, D. (2003). Line balancing of PCB assembly line using immune algorithms. Engineering with Computers, 19(2–3), 92–100.

    Article  Google Scholar 

  • Kim, Y. K., Kim, Y. H., & Kim, Y. J. (2000). Two-sided assembly line balancing: A genetic algorithm approach. Production Planning & Control, 11(1), 44–53.

    Article  Google Scholar 

  • Lapierre, S., Ruiz, A., & Soriano, P. (2006). Balancing assembly lines with tabu search. European Journal of Operational Research, 168(3), 826–837.

    Article  MathSciNet  MATH  Google Scholar 

  • Leu, Y. Y., Matheson, L. A., & Rees, L. P. (1994). Assembly-line balancing using genetic algorithms with heuristic-generated initial populations and multiple evaluation criteria. Decision Sciences, 25(4), 581–606.

    Article  Google Scholar 

  • Mcclain, J., Thomas, L., & Sox, C. (1992). On-the-fly line balancing with very little WIP. International Journal of Production Economics, 27(3), 283–289.

    Article  Google Scholar 

  • McMullen, P., & Tarasewich, P. (2006). Multi-objective assembly line balancing via a modified ant colony optimization technique. International Journal of Production Research, 44(1), 27–42.

    Article  MATH  Google Scholar 

  • Michalewicz, Z. (1992). Genetic algorithm + data structures = evolution programs. New York, USA: Springer.

    Book  MATH  Google Scholar 

  • Peeters, M., & Degraeve, Z. (2006). An linear programming based lower bound for the simple assembly line balancing problem. European Journal of Operational Research, 168(3), 716–731.

    Article  MathSciNet  MATH  Google Scholar 

  • Salveson, M. E. (1955). The assembly line balancing problem. Journal of Industrial Engineering, 6(3), 18–25.

    MathSciNet  Google Scholar 

  • Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research, 168(3), 666–693.

    Article  MathSciNet  MATH  Google Scholar 

  • Simaria, A., & Vilarinho, P. (2004). A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II. Computers & Industrial Engineering, 47(4), 391–407.

    Article  Google Scholar 

  • Syswerda, G. (1991). Schedule optimization using genetic algorithms. In L. Davis (ed.), Handbook of genetic algorithms (pp. 332–349). New York, Van Nostrand Reinhold.

    Google Scholar 

  • Tozkapan, A., Kirca, O., & Chung, C. S. (2003). A branch and bound algorithm to minimize the total weighted flowtime for the two-stage assembly scheduling problem. Computers & Operations Research, 30(2), 309–320.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsutsui, S., & Ghosh, A. (1998). A study on the effect of multi-parent recombination in real coded genetic algorithms. In Proceedings of the 1998 IEEE Conference on Evolutionary Computation. Anchorage, Alaska, USA, IEEE Press.

    Google Scholar 

  • Vilarinho, P., & Simaria, A. (2006). ANTBAL: An ant colony optimization algorithm for balancing mixed-model assembly lines with parallel workstations. International Journal of Production Research, 44(2), 291–303.

    Article  MATH  Google Scholar 

  • Wong, W., Mok, P., & Leung, S. (2006). Developing a genetic optimisation approach to balance an apparel assembly line. International Journal of Advanced Manufacturing Technology, 28(3–4), 387–394.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxia Guo PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guo, Z. (2016). A Bilevel Multi-parent Genetic Optimization Model for Flexible Assembly Line Balancing with Work-Sharing and Workstation Revisiting. In: Intelligent Decision-making Models for Production and Retail Operations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52681-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52681-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52679-8

  • Online ISBN: 978-3-662-52681-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics