Advertisement

Laminar Two-Dimensional Flow

  • Günter BrennEmail author
Chapter
Part of the Mathematical Engineering book series (MATHENGIN)

Abstract

The present chapter discusses flows through structures with solid walls and constant flow cross sections, and flows outside the surfaces of solid bodies in motion, allowing for the formation of two-dimensional velocity fields. The flows may be steady or unsteady. We discuss a selection of classical flows with generic relevance for technical applications, as represented in other books as well [3, 9, 11, 15]. We add the discussion of a flow relevant for the biomechanics of brain injuries. In all cases we start from the stream functions derived in the preceding chapter.

Keywords

Flow Field Velocity Profile Stream Function Pipe Flow Poiseuille Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions, pp. 503–535. Dover, New York (1972)Google Scholar
  2. 2.
    Batchelor, G.K.: An Introduction to Fluid Mechanics. Cambridge University Press, Cambridge (UK) (2000)Google Scholar
  3. 3.
    Currie, I.G.: Fundamental Mechanics of Fluids, 2nd edn. McGraw Hill, New York (USA) (1993)zbMATHGoogle Scholar
  4. 4.
    Drazin, P.G., Reid, W.H.: Hydrodynamic Stability, 2nd edn. Cambridge University Press, Cambridge (UK) (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Durst, F., Ismailov, M., Trimis, D.: Measurement of instantaneous flow rates in periodically operating injection systems. Exp. Fluids 20, 178–188 (1996)Google Scholar
  6. 6.
    Durst, F., Ünsal, B., Ray, S., Trimis, D.: Method for defined mass flow variations in time and its application to test a mass flow rate meter for pulsating flows. Meas. Sci. Technol. 18, 790–802 (2007)CrossRefGoogle Scholar
  7. 7.
    Klug, C., Sinz, Brenn, G. Feist, F.: Experimental sphere-in-sphere testing for the validation of a numerical cerebrospinal fluid model. In: Proceedings of the IRCOBI Conference 2013, paper IRC-13-53, pp. 483–496. Gothenburg (S), 11–13 September 2013Google Scholar
  8. 8.
    Lambossy, P.: Oscillations forcées d’un liquide incompressible et visqueux dans un tube rigide et horizontal. Calcul de la force de frottement (Forced oscillations of an incompressible viscous liquid in a rigid horizontal tube. Calculation of the friction force, in French). Helvet. Phys. Acta 25, 371–386 (1952)Google Scholar
  9. 9.
    Schlichting, H.: Grenzschichttheorie (Boundary Layer Theory, in German), 8th edn. Braun, Karlsruhe (Germany) (1982)Google Scholar
  10. 10.
    Sexl, T.: Über den von E.G. Richardson entdeckten Annulareffekt (About the annular effect discovered by E.G. Richardson, in German). Z. Phys. 61, 349–362 (1930)CrossRefzbMATHGoogle Scholar
  11. 11.
    Sherman, F.S.: Viscous Flow. McGraw-Hill, New York (1990)zbMATHGoogle Scholar
  12. 12.
    Spurk, J.H.: Strömungslehre - Eine Einführung in die Theorie der Strömungen (Fluid Mechanics—An Introduction to the Theory of Fluid Flow, in German), 5th edn. Springer, Berlin, Heidelberg, New York (2004)Google Scholar
  13. 13.
    Szymanski, P.: Quelques solutions exactes des équations de l’hydrodynamique du fluide visqueux dans le cas d’un tube cylindrique (Some exact solutions of the hydrodynamic equations of the viscous fluid in the case of a cylindrical tube, in French). J. Math. Pures Appl. 11, 67–107 (1932)zbMATHGoogle Scholar
  14. 14.
    Taylor, G.I.: Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc. A 223, 289–343 (1923)CrossRefzbMATHGoogle Scholar
  15. 15.
    White, F.M.: Viscous Fluid Flow, 2nd edn. McGraw Hill, New York (USA) (1991)Google Scholar
  16. 16.
    Womersley, J.R.: Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553–563 (1955)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Fluid Mechanics and Heat TransferGraz University of TechnologyGrazAustria

Personalised recommendations