Skip to main content

Airway Diseases

  • Chapter
  • First Online:
  • 3155 Accesses

Abstract

Tracheitis and bronchitis are one of the most common diseases in all ages. Acute tracheobronchitis is common in children as well as in old patients, less common in middle ages. The causes are in most instances infections. In children viral infections dominate the infectious spectrum. It usually starts at kindergarten age as a first peak. Later on children also get in contact with bacterial organisms, but most often develop immune protection. In most developed countries, due to vaccination programs, classical infections are decreasing. However, in some countries because of refusal of vaccination by parents, the situation can change.

 Bronchial Asthma is a chronic inflammatory disease of the conducting airways, in which the epithelium, and cells of the innate and adaptive immune system are involved. Asthma affects approximately 300 million people worldwide, and its incidence is increasing especially in developed countries. The leading symptom is hyperreactivity of the airway smooth muscle cells. Clinically it is characterized by shortness of breath, wheezing, and chest tightness. Traditionally asthma was separated into allergic (intrinsic) and non-allergic (extrinsic) asthma, but in recent years within non-allergic asthma several so-called endotypes have been identified. So asthma is no longer regarded as a single disease but a rather a syndrome. These endotypes differ with respect to genetic susceptibility, environmental risk factors, age of onset, clinical presentation, prognosis, and response to treatment.

 Bronchioles are small airways defined by an inner diameter ≤ 1 mm. Bronchioles have a thin muscular layer and are devoid of cartilage. Bronchioles start at the 16th generation of airways. The epithelial layer is composed of a mixture of Clara, ciliated and secretory columnar, and few goblet cells. At the basal lamina there is also a layer of triangular shaped basal cells and atop of them polygonal reserve cells. At the larger bronchioles the thickness of the epithelial layer is 3 cell layers, but towards the terminal bronchioles the epithelial layer is reduced to 2 layers, basal cells and Clara cells with a few interspersed columnar cells38. Regeneration starts from Clara cells and reserve cells, whereas basal cells are functioning to serve as attachments for the columnar cells. At the bronchioloalveolar junction zone (BJZ) terminal stem cell have been identified, which express Clara cell protein 10 (CC10), Surfactant Apoprotein C and stem cell markers.

 Bronchiolitis most often is associated with either bronchitis such as in asthma, or it is associated with pneumonia, an example is organizing pneumonia. However, there are two reasons to discuss bronchiolitis separately: Bronchiolitis is the underlying pathology in clinically called small airways disease, and it does occur sometimes as an isolated disease confined only to bronchioles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fattahi F, Vonk JM, Bulkmans N, Fleischeuer R, Gouw A, Grunberg K, Mauad T, Popper H, Felipe-Silva A, Vrugt B, Wright JL, Yang HM, Kocks JW, Hylkema MN, Postma DS, Timens W, Ten Hacken NH. Old dilemma: asthma with irreversible airway obstruction or COPD. Virchows Arch. 2015;467:583–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Regland B, Cajander S, Wiman LG, Falkmer S. Scanning electron microscopy of the bronchial mucosa in some lung diseases using bronchoscopy specimens. A pilot study including cases of bronchial carcinoma, sarcoidosis, silicosis and tuberculosis. Scand J Respir Dis. 1976;57:171–82.

    CAS  PubMed  Google Scholar 

  3. Viswanathan S, Eria L, Diunugala N, Johnson J, McClean C. An analysis of effects of San Diego wildfire on ambient air quality. J Air Waste Manag Assoc. 2006;56:56–67.

    Article  CAS  PubMed  Google Scholar 

  4. Massolo L, Muller A, Tueros M, Rehwagen M, Franck U, Ronco A, Herbarth O. Assessment of mutagenicity and toxicity of different-size fractions of air particulates from La Plata, Argentina, and Leipzig, Germany. Environ Toxicol. 2002;17:219–31.

    Article  CAS  PubMed  Google Scholar 

  5. Shi T, Duffin R, Borm PJ, Li H, Weishaupt C, Schins RP. Hydroxyl-radical-dependent DNA damage by ambient particulate matter from contrasting sampling locations. Environ Res. 2006;101:18–24.

    Article  CAS  PubMed  Google Scholar 

  6. Becker S, Soukup JM, Gallagher JE. Differential particulate air pollution induced oxidant stress in human granulocytes, monocytes and alveolar macrophages. Toxicol In Vitro. 2002;16:209–18.

    Article  CAS  PubMed  Google Scholar 

  7. Oberdorster G. Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal Toxicol. 2002;14:29–56.

    Article  CAS  PubMed  Google Scholar 

  8. Ma JY, Ma JK. The dual effect of the particulate and organic components of diesel exhaust particles on the alteration of pulmonary immune/inflammatory responses and metabolic enzymes. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev. 2002;20:117–47.

    Article  Google Scholar 

  9. Becker S, Dailey LA, Soukup JM, Grambow SC, Devlin RB, Huang YC. Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress. Environ Health Perspect. 2005;113:1032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hannigan MP, Busby Jr WF, Cass GR. Source contributions to the mutagenicity of urban particulate air pollution. J Air Waste Manag Assoc. 2005;55:399–410.

    Article  CAS  PubMed  Google Scholar 

  11. Kontakioti E, Domvri K, Papakosta D, Daniilidis M. HLA and asthma phenotypes/endotypes: a review. Hum Immunol. 2014;75:930–9.

    Article  CAS  PubMed  Google Scholar 

  12. Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. 2008;372:1107–19.

    Article  PubMed  Google Scholar 

  13. Hall S, Agrawal DK. Key mediators in the immunopathogenesis of allergic asthma. Int Immunopharmacol. 2014;23:316–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Erle DJ, Sheppard D. The cell biology of asthma. J Cell Biol. 2014;205:621–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. DeKruyff RH, Yu S, Kim HY, Umetsu DT. Innate immunity in the lung regulates the development of asthma. Immunol Rev. 2014;260:235–48.

    Article  CAS  PubMed  Google Scholar 

  16. Holgate ST. Mechanisms of asthma and implications for its prevention and treatment: a personal journey. Allergy, Asthma Immunol Res. 2013;5:343–7.

    Article  Google Scholar 

  17. Lambrecht BN, Hammad H. Asthma: the importance of dysregulated barrier immunity. Eur J Immunol. 2013;43:3125–37.

    Article  CAS  PubMed  Google Scholar 

  18. Gaurav R, Agrawal DK. Clinical view on the importance of dendritic cells in asthma. Expert Rev Clin Immunol. 2013;9:899–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar Y, Bhatia A. Immunopathogenesis of allergic disorders: current concepts. Expert Rev Clin Immunol. 2013;9:211–26.

    Article  CAS  PubMed  Google Scholar 

  20. Grotenboer NS, Ketelaar ME, Koppelman GH, Nawijn MC. Decoding asthma: translating genetic variation in IL33 and IL1RL1 into disease pathophysiology. J Allergy Clin Immunol. 2013;131:856–65.

    Article  CAS  PubMed  Google Scholar 

  21. Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE, Boerner RM, Alexander SN, Bellinghausen LK, Song AS, Petrova YM, Tuvim MJ, Adachi R, Romo I, Bordt AS, Bowden MG, Sisson JH, Woodruff PG, Thornton DJ, Rousseau K, De la Garza MM, Moghaddam SJ, Karmouty-Quintana H, Blackburn MR, Drouin SM, Davis CW, Terrell KA, Grubb BR, O’Neal WK, Flores SC, Cota-Gomez A, Lozupone CA, Donnelly JM, Watson AM, Hennessy CE, Keith RC, Yang IV, Barthel L, Henson PM, Janssen WJ, Schwartz DA, Boucher RC, Dickey BF, Evans CM. Muc5b is required for airway defence. Nature. 2014;505:412–6.

    Article  CAS  PubMed  Google Scholar 

  22. Jackola DR. Random allergen-specific IgE expression in atopic families: evidence for inherited “stochastic bias” in adverse immune response development to non-infectious antigens. Mol Immunol. 2007;44:2549–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan J, Bernstein JA. Occupational asthma: an overview. Curr Allergy Asthma Rep. 2014;14:431.

    Article  PubMed  Google Scholar 

  24. Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, Ellwanger A, Sidhu SS, Dao-Pick TP, Pantoja C, Erle DJ, Yamamoto KR, Fahy JV. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci U S A. 2007;104:15858–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holtzman MJ, Byers DE, Alexander-Brett J, Wang X. The role of airway epithelial cells and innate immune cells in chronic respiratory disease. Nat Rev Immunol. 2014;14:686–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar RK, Foster PS, Rosenberg HF. Respiratory viral infection, epithelial cytokines, and innate lymphoid cells in asthma exacerbations. J Leukoc Biol. 2014;96:391–6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vadasz Z, Haj T, Toubi E. The role of B regulatory cells and Semaphorin3A in atopic diseases. Int Arch Allergy Immunol. 2014;163:245–51.

    Article  CAS  PubMed  Google Scholar 

  28. van Helden MJ, Lambrecht BN. Dendritic cells in asthma. Curr Opin Immunol. 2013;25:745–54.

    Article  PubMed  Google Scholar 

  29. Heijink IH, Nawijn MC, Hackett TL. Airway epithelial barrier function regulates the pathogenesis of allergic asthma. Clin Exp Allergy. 2014;44:620–30.

    Article  CAS  PubMed  Google Scholar 

  30. Vermeer PD, Denker J, Estin M, Moninger TO, Keshavjee S, Karp P, Kline JN, Zabner J. MMP9 modulates tight junction integrity and cell viability in human airway epithelia. Am J Physiol Lung Cell Mol Physiol. 2009;296:L751–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Boer WI, Sharma HS, Baelemans SM, Hoogsteden HC, Lambrecht BN, Braunstahl GJ. Altered expression of epithelial junctional proteins in atopic asthma: possible role in inflammation. Can J Physiol Pharmacol. 2008;86:105–12.

    Article  PubMed  Google Scholar 

  32. Yu S, Kim HY, Chang YJ, DeKruyff RH, Umetsu DT. Innate lymphoid cells and asthma. J Allergy Clin Immunol. 2014;133:943–50, quiz 951.

    Article  CAS  PubMed  Google Scholar 

  33. Alexis NE, Carlsten C. Interplay of air pollution and asthma immunopathogenesis: a focused review of diesel exhaust and ozone. Int Immunopharmacol. 2014;23:347–55.

    Article  CAS  PubMed  Google Scholar 

  34. Message SD, Johnston SL. The immunology of virus infection in asthma. Eur Respir J. 2001;18:1013–25.

    Article  CAS  PubMed  Google Scholar 

  35. Lambrecht BN, Hammad H. Allergens and the airway epithelium response: gateway to allergic sensitization. J Allergy Clin Immunol. 2014;134:499–507.

    Article  CAS  PubMed  Google Scholar 

  36. Postma DS, Reddel HK, ten Hacken NH, van den Berge M. Asthma and chronic obstructive pulmonary disease: similarities and differences. Clin Chest Med. 2014;35:143–56.

    Article  PubMed  Google Scholar 

  37. Popper H. Experimental monoarthritis. Modulatory effect of injected eosinophils on influx of various types of inflammatory cells. Inflammation. 1984;8:301–12.

    Article  CAS  PubMed  Google Scholar 

  38. Popper HH. Bronchiolitis, an update. Virchows Arch. 2000;437:471–81.

    Article  CAS  PubMed  Google Scholar 

  39. Tam A, Sin DD. Pathobiologic mechanisms of chronic obstructive pulmonary disease. Med Clin N Am. 2012;96:681–98.

    Article  CAS  PubMed  Google Scholar 

  40. Shan M, Yuan X, Song LZ, Roberts L, Zarinkamar N, Seryshev A, Zhang Y, Hilsenbeck S, Chang SH, Dong C, Corry DB, Kheradmand F. Cigarette smoke induction of osteopontin (SPP1) mediates T(H)17 inflammation in human and experimental emphysema. Sci Transl Med. 2012;4:117ra119.

    Article  Google Scholar 

  41. Cole BB, Smith RW, Jenkins KM, Graham BB, Reynolds PR, Reynolds SD. Tracheal Basal cells: a facultative progenitor cell pool. Am J Pathol. 2010;177:362–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Banerjee ER, Henderson Jr WR. Characterization of lung stem cell niches in a mouse model of bleomycin-induced fibrosis. Stem Cell Res Ther. 2012;3:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Popper HH, Pailer S, Wurzinger G, Feldner H, Hesse C, Eber E. Expression of adhesion molecules in allergic lung diseases. Virchows Arch. 2002;440:172–80.

    Article  CAS  PubMed  Google Scholar 

  44. Popper H, Jakse R, Loidolt D. Problems in the differential diagnosis of Kartagener’s syndrome and ATP-ase deficiency. Pathol Res Pract. 1985;180:481–5.

    Article  CAS  PubMed  Google Scholar 

  45. Chang YL, Yao YT, Wang NS, Lee YC. Segmental necrosis of small bronchi after prolonged intakes of Sauropus androgynus in Taiwan. Am J Respir Crit Care Med. 1998;157:594–8.

    Article  CAS  PubMed  Google Scholar 

  46. Chang H, Wang JS, Tseng HH, Lai RS, Su JM. Histopathological study of Sauropus androgynus-associated constrictive bronchiolitis obliterans: a new cause of constrictive bronchiolitis obliterans. Am J Surg Pathol. 1997;21:35–42.

    Article  CAS  PubMed  Google Scholar 

  47. Lai RS, Chiang AA, Wu MT, Wang JS, Lai NS, Lu JY, Ger LP, Roggli V. Outbreak of bronchiolitis obliterans associated with consumption of Sauropus androgynus in Taiwan. Lancet. 1996;348:83–5.

    Article  CAS  PubMed  Google Scholar 

  48. Hashimoto I, Imaizumi K, Hashimoto N, Furukawa H, Noda Y, Kawabe T, Honda T, Ogawa T, Matsuo M, Imai N, Ito S, Sato M, Kondo M, Shimokata K, Hasegawa Y. Aqueous fraction of Sauropus androgynus might be responsible for bronchiolitis obliterans. Respirology. 2013;18:340–7.

    Article  PubMed  Google Scholar 

  49. Travis WD, Costabel U, Hansell DM, King Jr TE, Lynch DA, Nicholson AG, Ryerson CJ, Ryu JH, Selman M, Wells AU, Behr J, Bouros D, Brown KK, Colby TV, Collard HR, Cordeiro CR, Cottin V, Crestani B, Drent M, Dudden RF, Egan J, Flaherty K, Hogaboam C, Inoue Y, Johkoh T, Kim DS, Kitaichi M, Loyd J, Martinez FJ, Myers J, Protzko S, Raghu G, Richeldi L, Sverzellati N, Swigris J, Valeyre D. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2013;188:733–48.

    Article  PubMed  Google Scholar 

  50. Benesch M, Kurz H, Eber E, Varga EM, Gopfrich H, Pfleger A, Popper H, Setinek-Liszka U, Zach MS. Clinical and histopathological findings in two Turkish children with follicular bronchiolitis. Eur J Pediatr. 2001;160:223–6.

    Article  CAS  PubMed  Google Scholar 

  51. Nicholson AG, Kim H, Corrin B, Bush A, du Bois RM, Rosenthal M, Sheppard MN. The value of classifying interstitial pneumonitis in childhood according to defined histological patterns. Histopathology. 1998;33:203–11.

    Article  CAS  PubMed  Google Scholar 

  52. Kudoh S, Keicho N. Diffuse panbronchiolitis. Semin Respir Crit Care Med. 2003;24:607–18.

    Article  PubMed  Google Scholar 

  53. Homma S, Sakamoto S, Kawabata M, Kishi K, Tsuboi E, Motoi N, Hebisawa A, Yoshimura K. Comparative clinicopathology of obliterative bronchiolitis and diffuse panbronchiolitis. Respiration. 2006;73:481–7.

    Article  PubMed  Google Scholar 

  54. She J, Sun Q, Fan L, Qin H, Bai C, Shen C. Association of HLA genes with diffuse panbronchiolitis in Chinese patients. Respir Physiol Neurobiol. 2007;157:366–73.

    Article  CAS  PubMed  Google Scholar 

  55. Anthony M, Singham S, Soans B, Tyler G. Diffuse panbronchiolitis: not just an Asian disease: Australian case series and review of the literature. Biomed Imaging Interv J. 2009;5, e19.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Churg A, Myers J, Suarez T, Gaxiola M, Estrada A, Mejia M, Selman M. Airway-centered interstitial fibrosis: a distinct form of aggressive diffuse lung disease. Am J Surg Pathol. 2004;28:62–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Popper, H. (2017). Airway Diseases. In: Pathology of Lung Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50491-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-50491-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50489-5

  • Online ISBN: 978-3-662-50491-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics