Skip to main content

Cycle Slip Detection and Ambiguity Resolution

  • Chapter
  • First Online:
GPS
  • 3440 Accesses

Abstract

Ambiguity problems can arise during phase measurement when the receiver loses its lock on the signal, and phase measurement must be reinitiated. This phenomenon is called cycle slip, i.e. the cycle count must begin again because of a signal interruption. The consequence of a cycle slip is an observable jump by an integer number of cycles in the adjacent carrier phase, and a new ambiguity parameter is required in the related observation model. Accurate cycle slip detection thus ensures correct ambiguity parameterisation . Here, we begin with a discussion of cycle slip detection, after which we will focus on integer ambiguity resolution, including integer ambiguity search criteria. We also provide an outline and discussion of the historical ambiguity function method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bertiger W, Desai S, Haines B, Harvey N, Moore A, Owen S, Weiss J (2010) Single receiver phase ambiguity resolution with GPS data. J Geod 84(5):327-337.

    Google Scholar 

  • Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8):10187–10203.

    Google Scholar 

  • Bronstein IN, Semendjajew KA (1987) Taschenbuch der Mathematik.B. G. Teubner Verlagsgesellschaft, Leipzig, ISBN 3-322-00259-4.

    Google Scholar 

  • Cannon ME, Lachapelle G, Goddard TW (1997) Development and results of a precision farming sys-tem using GPS and GIS technologies. Geomatica 51,1:9–19.

    Google Scholar 

  • Collins P (2008) Isolating and estimating undifferenced GPS integer ambiguities. In: Proceedings of ION national technical meeting, San Diego, US, pp 720–732.

    Google Scholar 

  • Cui X, Yu Z, Tao B, Liu D (1982) Adjustment in surveying. Surveying Press, Peking, (in Chinese).

    Google Scholar 

  • Dong D, Bock Y (1989) Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966.

    Google Scholar 

  • Euler H-J, Landau H (1992) Fast GPS ambiguity resolution on-the-fly for real-time applications. In: Proceedings of 6th Int. Geod. Symp. on Satellite Positioning. Columbus, Ohio, pp 17–20.

    Google Scholar 

  • Forsell B, Martín-Neira M, Harris R (1997) Carrier phase ambiguity resolution in GNSS-2. Proceedings of ION GPS-97, The 10th International Technical Meeting of the Satellite Division of the Institute of Navigation, Kansas City, Missouri, September 16-19, pp. 1727-1736.

    Google Scholar 

  • Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7):389–399.

    Google Scholar 

  • Gehlich U, Lelgemann D (1997) Zur Parametrisierung von GPS-Phasenmessungen. ZfV 6:262–270.

    Google Scholar 

  • Geng J, Meng X, Dodson A, Teferle F (2010) Integer ambiguity resolution in precise point positioning: method comparison. J Geod 84:569-581.

    Google Scholar 

  • Gotthardt E (1978) Einführung in die Ausgleichungsrechnung. Herbert Wichmann Verlag, Karlsruhe.

    Google Scholar 

  • Han S, Rizos C (1995) On-the-fly ambiguity resolution for long range GPS kinematic positioning. In: GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications: 21st IUGG General Assembly, IAG Symposium No. 115, Boulder, USA, July 3–4, 1995. Springer-Verlag, Berlin, pp 290–294.

    Google Scholar 

  • Han S, Rizos C (1997) Comparing GPS ambiguity resolution techniques. GPS World 8(10):54–61.

    Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Collins J (1997, 2001) GPS theory and practice. Springer-Press, Wien.

    Google Scholar 

  • Jung, J (1999) High integrity carrier phase navigation for future LAAS using multiple civilian GPS signals. Proceedings of ION GPS-99, The 12th International Technical Meeting of the Satellite Division of the Institute of Navigation, Nashville, USA, September 14-17, pp. 727-736.

    Google Scholar 

  • Klobuchar JA (1996) Ionospheric effects on GPS. In: Parkinson BW, Spilker JJ (eds) Global Position-ing System: Theory and applications, Vol. I, Chapter 12.

    Google Scholar 

  • Laurichesse D, Mercier F, Berthias J, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navig J Inst Navig 56(2):135–149.

    Google Scholar 

  • Leick A (1995) GPS satellite surveying. John Wiley & Sons Ltd., New York.

    Google Scholar 

  • Melbourne W (1985) The case for ranging in GPS-based geodetic systems. In: Proceedings of first international symposium on precise positioning with the global positioning system, Rockville, US, pp 373–386.

    Google Scholar 

  • Merbart L (1995) Ambiguity resolution techniques in geodetic and geodynamic applications of the Global Positioning System. Dissertation an der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern.

    Google Scholar 

  • Mercier F, Laurichesse D (2008) Zero-difference ambiguity blocking properties of satellite/receiver widelane biases. In: Proceedings of European navigation conference, Toulouse, France.

    Google Scholar 

  • Morujao D, Mendes V (2008) Investigation of Instantaneous Carrier Phase Ambiguity Resolution with the GPS/GALILEO Combination using the General Ambiguity Search Criterion. J. GPS, 7(1): 35-45.

    Google Scholar 

  • Remondi B (1984) Using the Global Positioning System (GPS) phase observable for relative geodesy: Modelling, processing, and results. University of Texas at Austin, Center for Space Research.

    Google Scholar 

  • Sjoeberg LE (1999) Unbiased vs biased estimation of GPS phase ambiguities from dual-frequency code and phase observables. J Geodesy 73:118–124.

    Google Scholar 

  • Syndergaard S (1999) Retrieval analysis and methodologies in atmospheric limb sounding using the GNSS radio occultation technique. Dissertation, Niels Bohr Institute for Astronomy, Physics and Geophysics, Faculty of Science, University of Copenhagen.

    Google Scholar 

  • Teunissen P (1993) Least squares estimation of the integer GPS ambiguities. Invited lecture, Section IV: Theory and methodology, IAG General Meeting, Beijing, China, August 1993. Also in LGR-Series n.6, Delft Geodetic Computing Centre, Delft University of Technology, Delft.

    Google Scholar 

  • Teunissen P (1994) The invertible GPS ambiguity transformations. Manuscripta Geodaetica, 20 (6): 489-497.

    Google Scholar 

  • Teunissen P (1995) The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation. J Geodesy 70(1–2):65–82.

    Google Scholar 

  • Vollath U, Birnbach S, Landau H (1998) An analysis of three-carrier ambiguity resolution (TCAR) technique for precise relative positioning in GNSS-2. Proceedings of ION GPS-98, The 11th International Technical Meeting of the Satellite Division of the Institute of Navigation, Nashville, Tennessee, USA, September 15-18, pp. 417-426.

    Google Scholar 

  • Wang LX, Fang ZD, Zhang MY, Lin GB, Gu LK, Zhong TD, Yang XA, She DP, Luo ZH, Xiao BQ, Chai H, Lin DX (1979) Mathematic handbook. Educational Press, Peking, ISBN 13012-0165.

    Google Scholar 

  • Wang G, Chen Z, Chen W, Xu G (1988) The principle of GPS precise positioning system. Surveying Press, Peking, ISBN 7-5030-0141-0/P.58, 345 p, (in Chinese).

    Google Scholar 

  • Wanninger L (1995) Enhancing differential GPS using regional ionospheric models. B Geod 69:283–291.

    Google Scholar 

  • Wanninger L (1995) Einfluß ionosphärischer Störungen auf präzise GPS-Messungen in Mitteleuropa. Schriftenreihe des Deutschen Vereins für Vermessungswesen, Bd. 18, Stuttgart, pp 218–232.

    Google Scholar 

  • Wuebbena G (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: Proceedings of first international symposium on precise positioning with the global positioning system, Rockville, US, pp 403–412.

    Google Scholar 

  • Xu G (1992) Spectral analysis and geopotential determination (Spektralanalyse und Erdschwerefeldbestimmung). Dissertation, DGK, Reihe C, Heft Nr. 397, Press of the Bavarian Academy of Sciences, ISBN 3–7696–9442–2, 100 p, (with very detailed summary in German).

    Google Scholar 

  • Xu G (2002a) A general criterion of integer ambiguity search, J. GPS, Vol. 1 No.2: 122-131.

    Google Scholar 

  • Xu G (2003) GPS – Theory, Algorithms and Applications, Springer Heidelberg, ISBN 3-540-67812-3, 315 pages, in English.

    Google Scholar 

  • Xu G, Bastos L, Timmen L (1997) GPS kinematic positioning in AGMASCO campaigns – Strategic goals and numerical results. In: Proceedings of ION GPS-97 meeting in Kansas City, September 16–19, 1997, pp 1173–1184.

    Google Scholar 

  • Xu G, Fritsch J, Hehl K (1997) Results and conclusions of the carborne gravimetry campaign in northern Germany. Geodetic Week Berlin ’97, Oct. 6–11, 1997, electronic version published in http://www.geodesy.tu-berlin.de.

  • Xu G, Schwintzer P, Reigber Ch (1998) KSGSoft – Kinematic/Static GPS Software – Software user manual (version of 1998). Scientific Technical Report STR98/19 of GeoForschungsZentrum (GFZ) Potsdam.

    Google Scholar 

  • Xu G, Shen Y, Yang Y, Sun H, Zhang Q, Guo J, Yeh T (2010) Equivalence of GPS Algorithms and Its Inference. Sciences of Geodesy-I: Advances and Future Directions, Springer, Heidelberg, Berlin.

    Google Scholar 

  • Zhang FZ, Xu Y, Jiang CH (2016) An alternative derivation of the equivalent criterion, Surveying Journal of China, in review.

    Google Scholar 

  • Zhang W, Cannon M, Julien O, Alves P (2003) Investigation of combined GPS/GALILEO cascading ambiguity resolution schemes. Proceedings of ION GPS/GNSS 2003, The 16th International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, OR, USA, September 9-12, pp. 2599-2610.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guochang Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, G., Xu, Y. (2016). Cycle Slip Detection and Ambiguity Resolution. In: GPS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50367-6_8

Download citation

Publish with us

Policies and ethics