Advertisement

Topology-Driven Magnetic Quantum Phase Transition

  • Jinsong ZhangEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The interplay between the topological insulator and broken time-reversal symmetry (TRS) may create novel quantum effects. In this chapter, we show a magnetic quantum phase transition (QPT) accompanied by the sign reversal of the anomalous Hall effect in Cr-doped Bi2(Se x Te1−x )3 topological insulator films grown by MBE. Across the critical point, a topological QPT is revealed by both ARPES measurements and density functional theory (DFT) calculations.

Keywords

Density Functional Theory Calculation Quantum Phase Transition Topological Insulator Quantum Critical Point Anomalous Hall Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zhang J, Chang C-Z, Tang P, et al. Topology-driven magnetic quantum phase transition in topological insulators. Science. 2013;339:1582–6.ADSCrossRefGoogle Scholar
  2. 2.
    Moore JE. The birth of topological insulators. Nature. 2010;464:194–8.ADSCrossRefGoogle Scholar
  3. 3.
    Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys. 2010;82:3045–67.ADSCrossRefGoogle Scholar
  4. 4.
    Qi X-L, Zhang S-C. The quantum spin Hall effect and topological insulators. Phys Today. 2010;63:33–8.ADSCrossRefGoogle Scholar
  5. 5.
    Qi XL, Li R, Zang J, et al. Inducing a magnetic monopole with topological surface states. Science. 2009;323:1184–7.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Yu R, Zhang W, Zhang HJ, et al. Quantized anomalous Hall effect in magnetic topological insulators. Science. 2010;329:61–4.ADSCrossRefGoogle Scholar
  7. 7.
    Nomura K, Nagaosa N. Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators. Phys Rev Lett. 2011;106:166802.ADSCrossRefGoogle Scholar
  8. 8.
    Tse WK, MacDonald AH. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Phys Rev Lett. 2010;105:057401.ADSCrossRefGoogle Scholar
  9. 9.
    Garate I, Franz M. Inverse spin-galvanic effect in the interface between a topological insulator and a ferromagnet. Phys Rev Lett. 2010;104:146802.ADSCrossRefGoogle Scholar
  10. 10.
    Zhang H, Liu C-X, Qi X-L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys. 2009;5:438–42.CrossRefGoogle Scholar
  11. 11.
    Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat Phys. 2009;5:398–402.CrossRefGoogle Scholar
  12. 12.
    Chen YL, Analytis JG, Chu J-H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science. 2009;325:178–81.ADSCrossRefGoogle Scholar
  13. 13.
    Chen YL, Chu J-H, Analytis JG, et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science. 2010;329:659–62.ADSCrossRefGoogle Scholar
  14. 14.
    Liu Q, Liu C-X, Xu C, et al. Magnetic impurities on the surface of a topological insulator. Phys Rev Lett. 2009;102:156603.ADSCrossRefGoogle Scholar
  15. 15.
    Rosenberg G, Franz M. Surface magnetic ordering in topological insulators with bulk magnetic dopants. Phys Rev B. 2012;85:195119.ADSCrossRefGoogle Scholar
  16. 16.
    Wray LA, Xu S-Y, Xia Y, et al. A topological insulator surface under strong Coulomb, magnetic and disorder perturbations. Nat Phys. 2011;7:32–7.CrossRefGoogle Scholar
  17. 17.
    Xu S-Y, Neupane M, Liu C, et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat Phys. 2012;8:616–22.CrossRefGoogle Scholar
  18. 18.
    Okada Y, Dhital C, Zhou W, et al. Direct observation of broken time-reversal symmetry on the surface of a magnetically doped topological insulator. Phys Rev Lett. 2011;106:206805.ADSCrossRefGoogle Scholar
  19. 19.
    Beidenkopf H, Roushan P, Seo J, et al. Spatial fluctuations of helical Dirac fermions on the surface of topological insulators. Nat Phys. 2011;7:939–43.CrossRefGoogle Scholar
  20. 20.
    Hor YS, Roushan P, Beidenkopf H, et al. Development of ferromagnetism in the doped topological insulator Bi2−xMnxTe3. Phys Rev B. 2010;81:195203.ADSCrossRefGoogle Scholar
  21. 21.
    Kulbachinskii VA, Kaminskii AY, Kindo K, et al. Ferromagnetism in new diluted magnetic semiconductor Bi2−xFexTe3. Phys B. 2002;311:292–7.ADSCrossRefGoogle Scholar
  22. 22.
    Checkelsky JG, Ye J, Onose Y, et al. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat Phys. 2012;8:729–33.CrossRefGoogle Scholar
  23. 23.
    Song YR, Yang F, Yao M-Y, et al. Large magnetic moment of gadolinium substituted topological insulator: Bi1.98Gd0.02Se3. Appl Phys Lett. 2012;100:242403.ADSCrossRefGoogle Scholar
  24. 24.
    Zhang D, Richardella A, Rench DW, et al. Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator. Phys Rev B. 2012;86:205127.ADSCrossRefGoogle Scholar
  25. 25.
    Ji H, Allred JM, Ni N, et al. Bulk intergrowth of a topological insulator with a room-temperature ferromagnet. Phys Rev B. 2012;85:165313.ADSCrossRefGoogle Scholar
  26. 26.
    Haazen PPJ, Laloe JB, Nummy TJ, et al. Ferromagnetism in thin-film Cr-doped topological insulator Bi2Se3. Appl Phys Lett. 2012;100:082403–4.ADSCrossRefGoogle Scholar
  27. 27.
    Zhang Y, He K, Chang C-Z, et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat Phys. 2010;6:584–8.CrossRefGoogle Scholar
  28. 28.
    Jin H, Im J, Freeman AJ. Topological and magnetic phase transitions in Bi2Se3 thin films with magnetic impurities. Phys Rev B. 2011;84:134408.ADSCrossRefGoogle Scholar
  29. 29.
    Nagaosa N, Sinova J, Onoda S, et al. Anomalous Hall effect. Rev Mod Phys. 2010;82:1539–92.ADSCrossRefGoogle Scholar
  30. 30.
    He H-T, Wang G, Zhang T, et al. Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys Rev Lett. 2011;106:166805.ADSCrossRefGoogle Scholar
  31. 31.
    Liu M, Zhang J, Chang C-Z, et al. Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator. Phys Rev Lett. 2012;108:036805.ADSCrossRefGoogle Scholar
  32. 32.
    Xu S-Y, Xia Y, Wray LA, et al. Topological phase transition and texture inversion in a tunable topological insulator. Science. 2011;332:560–4.ADSCrossRefGoogle Scholar
  33. 33.
    Sato T, Segawa K, Kosaka K, et al. Unexpected mass acquisition of Dirac fermions at the quantum phase transition of a topological insulator. Nat Phys. 2011;7:840–4.CrossRefGoogle Scholar
  34. 34.
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–8.ADSCrossRefGoogle Scholar
  35. 35.
    Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953–79.ADSCrossRefGoogle Scholar
  36. 36.
    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–86.ADSCrossRefGoogle Scholar
  37. 37.
    Wyckoff RWG. Crystal structures, vol. 2. New York: Wiley; 1964.zbMATHGoogle Scholar
  38. 38.
    Hobbs D, Kresse G, Hafner J. Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys Rev B. 2000;62:11556–70.ADSCrossRefGoogle Scholar
  39. 39.
    Dudarev SL, Botton GA, Savrasov SY, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B. 1998;57:1505–9.ADSCrossRefGoogle Scholar
  40. 40.
    Liu Z, Liu C-X, Wu Y-S, et al. Stable nontrivial Z 2 topology in ultrathin Bi(111) films: a first-principles study. Phys Rev Lett. 2011;107:136805.ADSCrossRefGoogle Scholar
  41. 41.
    Xu G, Weng H, Wang Z, et al. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys Rev Lett. 2011;107:186806.ADSCrossRefGoogle Scholar
  42. 42.
    Liu C-X, Qi X-L, Zhang H, et al. Model Hamiltonian for topological insulators. Phys Rev B. 2010;82:045122.ADSCrossRefGoogle Scholar
  43. 43.
    Liu C-X, Zhang H, Yan B, et al. Oscillatory crossover from two-dimensional to three-dimensional topological insulators. Phys Rev B. 2010;81:041307.ADSCrossRefGoogle Scholar
  44. 44.
    Sinova J, Jungwirth T, Cerne J. Magneto-transport and magneto-optical properties of ferromagnetic (III, Mn)V semiconductors: a review. Int J Mod Phys B. 2004;18:1083–118.ADSCrossRefGoogle Scholar
  45. 45.
    MacDonald A, Niu Q. New twist for magnetic monopoles. Phys World. 2004;17:18–9.CrossRefGoogle Scholar
  46. 46.
    Ashcroft NW, Mermin DN. Solid state physics. New York: Saunders College; 1976.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Tsinghua UniversityBeijingChina

Personalised recommendations