Fires in Amazonia

  • Luiz E. O. C. Aragão
  • Liana O. Anderson
  • André Lima
  • Egidio Arai
Part of the Ecological Studies book series (ECOLSTUD, volume 227)


Fire has been used since the first humans arrived in Amazonia; however, it has recently become a widely used instrument for large-scale forest clearance. Patterns of fire incidence in the region have been exacerbated by recent drought events. Understanding temporal and spatial fire patterns as well as their consequences for forest structure, species composition, and the carbon cycle is critical for minimising global change impacts on Amazonian ecosystems and people. In this chapter, we provide an overview of the state of our knowledge on the spatial and temporal patterns of fire incidence in Amazonia, depicting the historical fire usage in the region, their relationship with land use and land cover, and their responses to climate seasonality and droughts. We subsequently focus on the impacts of fire, by quantifying the extent of burnt forests during major droughts and describing the main impacts on forest structure, composition, and carbon stocks. Finally, we present an overview of modelling initiatives for forecasting fire incidence in the region. We conclude by providing a comprehensive view of the processes that influence fire occurrence, potential feedbacks, and impacts in Amazonia. We also highlight how key areas within fire ecology must be improved for a better understanding of the long-term effect of fire on the Amazon forest ‘biome’.


Normalise Difference Vegetation Index Forest Fire Carbon Stock Vapour Pressure Deficit Advanced Very High Resolution Radiometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achard F, Balslev H, Beck S et al (2005) A proposal for defining the geographical boundaries of Amazonia (EUR 21808-EN), 39Google Scholar
  2. Ackerman A, Toon O, Taylor J et al (2000) Effects of aerosols on cloud albedo: evaluation of Twomey’s parameterization of cloud susceptibility using measurements of ship tracks. J Atmos Sci 57:2684–2695CrossRefGoogle Scholar
  3. Alencar A, Solorzano LA, Nepstad DC, Solórzano LA (2004) Modeling forest understory fires in a eastern Amazonian landscape. Ecol Appl 14:139–149. doi: 10.1890/01-6029 CrossRefGoogle Scholar
  4. Alencar A, Vera Diaz MDC, Nepstad D, Diaz MDV (2006) Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interact 10:1–17CrossRefGoogle Scholar
  5. Alencar A, Asner GP, Knapp D, Zarin D (2011) Temporal variability of forest fires in eastern Amazonia. Ecol Appl 21(7):2397–2412PubMedCrossRefGoogle Scholar
  6. Anderson LO, Aragão L, Lima A, Shimabukuro YE (2005) Detecção de cicatrizes de áreas queimadas baseada no modelo linear de mistura espectral e imagens índice de vegetação utilizando dados multitemporais do sensor MODIS. Acta Amaz 35:445–456CrossRefGoogle Scholar
  7. Aragão L, Malhi Y, Roman-Cuesta RM et al (2007a) Spatial patterns and fire response of recent Amazonian droughts. Geophys Res Lett. doi: 10.1029/2006gl028946 Google Scholar
  8. Aragão LEO, Shimabukuro YE, Lima A, Malhi Y, Anderson LO (2007b) Burn scars in Amazonian forests under extreme drought conditions. In: Anais do XIII Simposio Brasileiro de Sensoriamento Remoto. INPE, Florianópolis, Brazil, pp. 6605–6608Google Scholar
  9. Aragão L, Malhi Y, Barbier N et al (2008) Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos Trans R Soc Lond B Biol Sci 363:1779–1785. doi: 10.1098/rstb.2007.0026 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Aragão L, Shimabukuro YE (2010a) The incidence of fire in Amazonian forests with implications for REDD. Science 328:1275–1278. doi: 10.1126/science.1186925 PubMedCrossRefGoogle Scholar
  11. Aragão L, Shimabukuro YE (2010b) Response to comment on “The incidence of fire in Amazonian Forests with implications for REDD.”. Science 330:1627. doi: 10.1126/science.1195063 CrossRefGoogle Scholar
  12. Aragão LEOC, Shimabukuro YE, Cardoso M, Anderson LO, Lima A, Poulter B (2013) Frequência de queimadas durante as secas recentes. Secas na Amazônia: causas e consequências (ed. Borma LDS, Nobre CA). Oficina de Textos (ISBN:9788579750786), 367 p.Google Scholar
  13. Aragão LEOC, Poulter B, Barlow J, Anderson LO, Malhi Y, Saatchi S, Phillips O, Gloor E (2014) Environmental change and the carbon balance of Amazonian forests. Biol Rev. doi: 10.1111/brv.12088 PubMedGoogle Scholar
  14. Arima EY, Simmons CS, Walker RT, Cochrane MA (2007) Fire in the Brazilian Amazon: a spatially explicit model for policy impact analysis. J Reg Sci 47:541–567. doi: 10.1111/j.1467-9787.2007.00519.x CrossRefGoogle Scholar
  15. Artaxo P, Gatti L, Leal A et al (2005) Química atmosférica na Amazônia: A floresta e as emissões de queimadas controlando a composição da atmosfera amazônica. Acta Amaz 35:185–196CrossRefGoogle Scholar
  16. Baker TR, Phillips OL, Malhi Y et al (2004) Increasing biomass in Amazonian forest plots. Philos Trans R Soc Lond B Biol Sci 359:353–365. doi: 10.1098/rstb.2003.1422 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Balch JK, Nepstad DC, Brando PM et al (2008) Negative fire feedback in a transitional forest of southeastern Amazonia. Glob Chang Biol 14:2276–2287. doi: 10.1111/j.1365-2486.2008.01655.x CrossRefGoogle Scholar
  18. Balch JK, Nepstad DC, Curran LM et al (2011) Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. For Ecol Manage 261:68–77. doi: 10.1016/j.foreco.2010.09.029 CrossRefGoogle Scholar
  19. Barbosa RI (1998) Avaliação da área dos sistemas naturais e agroecossistemas atingida pelo fogo no Estado de Roraima (01.12.97 a 30.04.98).
  20. Barbosa I, Fearnside P (1999) Fires in the Brazilian Amazon: greenhouse gas emissions from burning of different ecosystems in Roraima during the 1997-98 El Ninõ event. Acta Amaz 29:513–534CrossRefGoogle Scholar
  21. Barlow J, Lagan BO, Peres CA (2003) Morphological correlates of fire-induced tree mortality in a central Amazonian forest. J Trop Ecol 19:291–299. doi: 10.1017/s0266467403003328 CrossRefGoogle Scholar
  22. Barlow J, Peres CA (2004a) Avifaunal responses to single and recurrent wildfires in Amazonian forests. Ecol Appl 14:1358–1373CrossRefGoogle Scholar
  23. Barlow J, Peres CA (2004b) Ecological responses to El Nino − induced surface fires in central Brazilian Amazonia: management implications for flammable tropical forests. Philos Trans R Soc B Biol Sci 359:367–380. doi: 10.1098/rstb.2003.1423 CrossRefGoogle Scholar
  24. Barlow J, Peres CA (2008) Fire-mediated dieback and compositional cascade in an Amazonian forest. Philos Trans R Soc Lond B 363(1498):1787–1794CrossRefGoogle Scholar
  25. Barlow J, Parry L, Gardner TA et al (2012) The critical importance of considering fire in REDD+ programs. Biol Conserv. doi: 10.1016/j.biocon.2012.03.034 Google Scholar
  26. Bowman DMJS, Amacher GS, Merry FD (2008) Fire use and prevention by traditional households in the Brazilian Amazon. Ecol Econ 67:117–130. doi: 10.1016/j.ecolecon.2007.12.003 CrossRefGoogle Scholar
  27. Bowman DMJS, Balch JK, Artaxo P et al (2009) Fire in the Earth system. Science 324:481–484. doi: 10.1126/science.1163886 PubMedCrossRefGoogle Scholar
  28. Brando PM, Nepstad DC, Balch JK et al (2012) Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Glob Chang Biol 18:630–641. doi: 10.1111/j.1365-2486.2011.02533.x CrossRefGoogle Scholar
  29. Broadbent EN, Asner GP, Keller M et al (2008) Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol Conserv 141:1745–1757. doi: 10.1016/j.biocon.2008.04.024 CrossRefGoogle Scholar
  30. Brondizio ES, Moran EF (2008) Human dimensions of climate change: the vulnerability of small farmers in the Amazon. Philos Trans R Soc Lond B Biol Sci 363:1803–1809. doi: 10.1098/rstb.2007.0025 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Bush MB, Silman MR, de Toledo MB et al (2007) Holocene fire and occupation in Amazonia: records from two lake districts. Philos Trans R Soc B Biol Sci 362:209–218. doi: 10.1098/rstb.2006.1980 CrossRefGoogle Scholar
  32. Bush MB, Silman MR, McMichael C et al (2008) Fire, climate change and biodiversity in Amazonia: a Late-Holocene perspective. Philos Trans R Soc Lond B Biol Sci 363:1795–1802. doi: 10.1098/rstb.2007.0014 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cardoso MF, Hurtt GC, Moore BM et al (2003) Projecting future fire activity in Amazonia. Glob Chang Biol 9:656–669CrossRefGoogle Scholar
  34. Cardoso M, Oliveira G (2007) Comparação entre a ocorrência de fogo durante a seca de 2005 eo El Niño em 1998 na Amazônia. 13 SBSR, pp 4425–4429Google Scholar
  35. Carmenta R, Parry L, Blackburn A et al (2011) Understanding human-fire interactions in tropical forest regions: a case for interdisciplinary research across the natural and social sciences. Ecol Soc 16:1–22Google Scholar
  36. Chang D, Song Y (2009) Comparison of L3JRC and MODIS global burned area products from 2000 to 2007. J Geophys Res 114:1–20. doi: 10.1029/2008JD011361 Google Scholar
  37. Chen Y, Randerson JT, Morton DC et al (2011) Forecasting fire season severity in South America using sea surface temperature anomalies. Science 334:787–791. doi: 10.1126/science.1209472 PubMedCrossRefGoogle Scholar
  38. Chuvieco E, Opazo S, Sione W et al (2008) Global burned-land estimation in Latin America using MODIS composite data. Ecol Appl 18:64–79PubMedCrossRefGoogle Scholar
  39. Cochrane M, Souza C Jr (1998) Linear mixture model classification of burned forests in the Eastern Amazon. Int J Remote Sens 17:3433–3440CrossRefGoogle Scholar
  40. Cochrane MA, Alencar A, Schulze M et al (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forest. Science 284:1832–1835. doi: 10.1126/science.284.5421.1832 PubMedCrossRefGoogle Scholar
  41. Cochrane MA, Schulze MD (1999) Fire as a recurrent event in tropical forests of the Eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31:2–16. doi: 10.1111/j.1744-7429.1999.tb00112.x Google Scholar
  42. Cochrane MA (2001) Synergistic interactions between habitat fragmentation and fire in evergreen tropical forests. Conserv Biol 15:48823CrossRefGoogle Scholar
  43. Cochrane MA, Laurance WFF (2002) Fire as a large-scale edge effect in Amazonian forests. J Trop Ecol 18:311–325. doi: 10.1017/S0266467402002237 CrossRefGoogle Scholar
  44. Cox PM, Betts RA, Collins M et al (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol 78:137–156. doi: 10.1007/s00704-004-0049-4 CrossRefGoogle Scholar
  45. CPTEC (2013) Monitoramento de queimadas e incêndios.
  46. Fearnside PM (1990) Fire in the tropical rain forest of the Amazon basin. In: Goldammer JG (ed) Fire in the tropical biota. Springer, Berlin, pp 106–116CrossRefGoogle Scholar
  47. Fearnside PM, Barbosa RI, Graça PMLA (2007) Burning of secondary forest in Amazonia: Biomass, burning efficiency and charcoal formation during land preparation for agriculture in Apiaú, Roraima, Brazil. For Ecol Manage 242(2):678–687CrossRefGoogle Scholar
  48. Giglio L, van der Werf G, Randerson J et al (2005) Global estimation of burned area using MODIS active fire observations. Atmos Chem Phys Discuss 5:11091–11141CrossRefGoogle Scholar
  49. Giglio L, Csiszar IA, Justice CO (2006) Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J Geophys Res 111:12. doi: 10.1029/2005jg000142 CrossRefGoogle Scholar
  50. Good P, Lowe JA, Collins M, Moufouma-Okia W (2008) An objective tropical Atlantic sea surface temperature gradient index for studies of south Amazon dry-season climate variability and change. Philos Trans R Soc B Biol Sci 363:1761–1766. doi: 10.1098/rstb.2007.0024 CrossRefGoogle Scholar
  51. Holben BN, Setzer A, Eck TF et al (1996) Effect of dry-season biomass burning on Amazon basin aerosol concentrations and optical properties, 1992–1994. J Geophys Res Atmos 101:19465–19481. doi: 10.1029/96JD01114 CrossRefGoogle Scholar
  52. Hutyra L, Munger J, Nobre C et al (2005) Climatic variability and vegetation vulnerability in Amazônia. Geophys Res Lett 32, L24712. doi: 10.1029/2005GL024981 CrossRefGoogle Scholar
  53. INPE (1999) Estimativa da área de cobertura florestal afetada pelo incêndio em Roraima a partir de dados de satélite; janeiro de 1999, 1–8Google Scholar
  54. Jain A (2007) Global estimation of CO emissions using three sets of satellite data for burned area. Atmos Environ 41:6931–6940CrossRefGoogle Scholar
  55. Justino F, Souza S, Setzer A (2002) Relação entre focos de calor e condições meteorológicas no Brasil. XII Congr. Bras. Meteorol, pp 2086–2093Google Scholar
  56. Kodandapani N, Cochrane MA, Sukumar R (2004) Conservation threat of increasing fire frequencies in the Western Ghats, India. Conserv Biol 18:1553–1561CrossRefGoogle Scholar
  57. Laurance WFL, Williamson GB (2001) Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conserv Biol 15:1529–1535. doi: 10.1046/j.1523-1739.2001.01093.x CrossRefGoogle Scholar
  58. Laurance W, Cochrane MA, Bergen S (2001a) The future of the Brazilian Amazon. Science 291:438–439PubMedCrossRefGoogle Scholar
  59. Laurance WF, Williamson GB, Delamônica P et al (2001b) Effects of a strong drought on Amazonian forest fragments and edges. J Trop Ecol 17:771–785CrossRefGoogle Scholar
  60. Laurance WF, Albernaz AK, Schroth G, Fearnside PM, Bergen S, Venticinque EM, Da Costa C (2002) Predictors of deforestation in the Brazilian Amazon. J Biogeogr 29(5–6):737–748CrossRefGoogle Scholar
  61. Li W, Fu R, Dickinson RE (2006) Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. J Geophys Res 111:1–14. doi: 10.1029/2005JD006355 CrossRefGoogle Scholar
  62. Lima A, Silva TSF, Aragão L et al (2012) Land use and land cover changes determine the spatial relationship between fire and deforestation in the Brazilian Amazon. Appl Geogr 34:239–246. doi: 10.1016/j.apgeog.2011.10.013 CrossRefGoogle Scholar
  63. Lucas RM, Honzak M, Curran PJ et al (2000) Mapping the regional extent of tropical forest regeneration stages in the Brazilian Legal Amazon using NOAA AVHRR data. Int J Remote Sens 21:2855–2881CrossRefGoogle Scholar
  64. Malhi Y, Pegoraro E, Nobre AD et al (2002) Energy and water dynamics of a central Amazonian rain forest. J Geophys Res Atmos 107:LBA 45–1–LBA 45–17. doi:  10.1029/2001JD000623
  65. Malhi Y, Roberts JT, Betts RA et al (2008) Climate change, deforestation, and the fate of the Amazon. Science 319:169–172. doi: 10.1126/science.1146961 PubMedCrossRefGoogle Scholar
  66. Marengo JA (1992) Interannual variability of surface climate in the Amazon Basin. Int J Climatol 12:853–863. doi: 10.1002/joc.3370120808 CrossRefGoogle Scholar
  67. Marengo JA (2004) Interdecadal variability and trends of rainfall across the Amazon basin. Theor Appl Climatol 78:79–96. doi: 10.1007/s00704-004-0045-8 CrossRefGoogle Scholar
  68. Marengo JA, Nobre CA, Tomasella J et al (2008) The drought of Amazonia in 2005. J Clim 21:495–516. doi: 10.1175/2007jcli1600.1 CrossRefGoogle Scholar
  69. Marengo JA, Tomasella J, Alves LM et al (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:1–5. doi: 10.1029/2011GL047436 CrossRefGoogle Scholar
  70. Massad T, Balch J, Davidson E et al (2013) Interactions between repeated fire, nutrients, and insect herbivores affect the recovery of diversity in the southern Amazon. Oecologia 172:219–229. doi: 10.1007/s00442-012-2482-x PubMedCrossRefGoogle Scholar
  71. Matricardi EA, Skole DL, Pedlowski MA et al (2010) Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sens Environ 114:1117–1129. doi: 10.1016/j.rse.2010.01.001 CrossRefGoogle Scholar
  72. Matson M, Holben B (1987) Satellite detection of tropical burning in Brazil. Int J Remote Sens 8:509–516CrossRefGoogle Scholar
  73. Mauas PJD, Flamenco E, Buccino AP (2008) Solar forcing of the stream flow of a continental scale South American River. Phys Rev Lett. doi: 10.1103/PhysRevLett.101.168501 PubMedGoogle Scholar
  74. MCT (Ministério da Ciência e Tecnologia) (2010) Segunda Comunicação Nacional do Brasil à Convenção-Quadro das Nações Unidas sobre Mudança do Clima, vol. 1. MCT, Coordenação Geral de Mudanças Globais de Clima, Brasília, DF, Brazil, 280 ppGoogle Scholar
  75. Meggers B (1994) Archeological evidence for the impact of mega-Nino events on Amazonia during the past two millennia. Clim Change 28:321–338CrossRefGoogle Scholar
  76. Mendonça M, Vera Diaz M, Nepstad D et al (2004) The economic cost of the use of fire in the Amazon. Ecol Econ 49:89–105CrossRefGoogle Scholar
  77. Morton DC, DeFries RS, Shimabukuro YE et al (2006) Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc Natl Acad Sci U S A 103:14637–14641. doi: 10.1073/pnas.0606377103 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Morton D, DeFries R, Jyoteshwar N et al (2011) Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data. Remote Sens Environ 115:1706–1720CrossRefGoogle Scholar
  79. Morton DC, Le Page Y, DeFries R et al (2013) Understorey fire frequency and the fate of burned forests in southern Amazonia. Philos Trans R Soc B 368:1471–2970. doi: 10.1098/rstb.2012.0163 CrossRefGoogle Scholar
  80. Myers N (1989) Deforestation rates in tropical forests and their climatic implications: a friends of the Earth report, 116 p.Google Scholar
  81. Nelson BW (1994) Natural forest disturbance and change in the Brazilian Amazon. Remote Sens Rev 10:105–125CrossRefGoogle Scholar
  82. Nepstad DC, Moreira AG, Alencar AA (1999) Flames in the rain forest: origins, impacts and alternatives to Amazonian fires. Pilot Program to Conserve the Brazilian Rain Forest. Conservation and development of Brazil’s tropical forest regions, Brasilia (Brasil), 161 p.Google Scholar
  83. Nepstad D, Lefebvre P, Lopes da Silva U et al (2004) Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Glob Chang Biol 10:704–717. doi: 10.1111/j.1529-8817.2003.00772.x CrossRefGoogle Scholar
  84. Phillips OL, Aragão L, Lewis SL et al (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347. doi: 10.1126/science.1164033 PubMedCrossRefGoogle Scholar
  85. Prins E, Menzel W (1994) Trends in South American biomass burning detected with the GOES visible infrared spin scan radiometer atmospheric sounder from 1983 to 1991. J Geophys Res 99:716–719CrossRefGoogle Scholar
  86. Prins EM, Feltz JM, Menzel WP, Ward DE (1998) An overview of GOES‐8 diurnal fire and smoke results for SCAR‐B and 1995 fire season in South America. J Geophys Res Atmos 103(D24):31821–31835CrossRefGoogle Scholar
  87. PRODES (2013) Monitoring of the Brazilian Amazon Forest by satellite. Accessed 15 Aug 2013
  88. Ramos-Neto MB, Pivello VR (2000) Lightning fires in a Brazilian savanna National Park: rethinking management strategies. Environ Manage 26(6):675–684PubMedCrossRefGoogle Scholar
  89. Ray D, Nepstad D, Moutinho P (2005) Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol Appl 15:1664–1678CrossRefGoogle Scholar
  90. Razafimpanilo H, Frouin R, Iacobellis SF, Somerville CJ (1995) Methodology for estimating burned area from AVHRR reflectance data. Remote Sens Environ 54:273–289CrossRefGoogle Scholar
  91. Rocha HR, Goulden ML, Miller SD et al (2004) Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol Appl 14:22–32. doi: 10.1890/02-6001 CrossRefGoogle Scholar
  92. Rocha W, Metcalfe DB, Doughty CE et al (2013) Ecosystem productivity and carbon cycling in intact and annually burnt forest at the dry southern limit of the Amazon rainforest (Mato Grosso, Brazil). Plant Ecol Divers 7:1–16. doi: 10.1080/17550874.2013.798368 Google Scholar
  93. Ronchail J, Cochonneau G, Molinier M et al (2002) Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans. Int J Climatol 22:1663–1686. doi: 10.1002/joc.815 CrossRefGoogle Scholar
  94. Rosenfeld D (1999) TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys Res Lett 26:3105–3108CrossRefGoogle Scholar
  95. Saatchi S, Asefi-Najafabady S, Malhi Y et al (2013) Persistent effects of a severe drought on Amazonian forest canopy. Proc Natl Acad Sci U S A 110:565–570. doi: 10.1073/pnas.1204651110 PubMedCrossRefGoogle Scholar
  96. Saldarriaga JG, West DC (1986) Holocene fires in the northern Amazon basin. Quat Res 26:358–366CrossRefGoogle Scholar
  97. Sanford RL, Saldarriaga J, Clark KE et al (1985) Amazon Rainforest fires. Science 227:53–55PubMedCrossRefGoogle Scholar
  98. Schroeder W, Morisette J, Csiszar I et al (2005) Characterizing vegetation fire dynamics in Brazil through multisatellite data: common trends and practical issues. Earth Interact 9:1–26CrossRefGoogle Scholar
  99. Schroeder W, Csiszar I, Morisette J (2008a) Quantifying the impact of cloud obscuration on remote sensing of active fires in the Brazilian Amazon. Remote Sens Environ 112:456–470CrossRefGoogle Scholar
  100. Schroeder W, Prins E, Giglio L et al (2008b) Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens Environ 112:2711–2726. doi: 10.1016/j.rse.2008.01.005 CrossRefGoogle Scholar
  101. Setzer A, Pereira M (1991) Amazonia Biomass burning in 1987 and an estimate of their tropospheric emissions. Ambio 20:19–22Google Scholar
  102. Setzer A, Pereira M, Pereira AC Jr (1994) Satellite studies of biomass burning in Amazonia—some practical aspects. Remote Sens Rev 10:91–103CrossRefGoogle Scholar
  103. Shimabukuro YE, Duarte V, Arai E, Freitas RM, Lima A, Valeriano DM, Brown IF, Maldonado MLR (2009) Fraction images derived from Terra Modis data for mapping burnt areas in Brazilian Amazonia. Int J Remote Sens 30:1537–1546. doi: 10.1080/01431160802509058 CrossRefGoogle Scholar
  104. Shuttleworth WJ, Leuning R, Black TA et al (1989) Micrometeorology of temperate and tropical forest (and discussion). Philos Trans R Soc B Biol Sci 324:299–334. doi: 10.1098/rstb.1989.0050 CrossRefGoogle Scholar
  105. Silveira JM, Barlow J, Krusche AV et al (2009) Effects of experimental fires on litter decomposition in a seasonally dry Amazonian forest. J Trop Ecol 25:657. doi: 10.1017/S0266467409990150 CrossRefGoogle Scholar
  106. Silvério DV, Brando PM, Balch JK et al (2013) Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Philos Trans R Soc B Biol Sci 368:1–9CrossRefGoogle Scholar
  107. Silvestrini RA, Soares-Filho BS, Nepstad D et al (2011) Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecol Appl 21:1573–1590PubMedCrossRefGoogle Scholar
  108. Simon M, Plummer S, Fierens F et al (2004) Burnt area detection at global scale using ATSR-2: the GLOBSCAR products and their qualification. J Geophys Res 109:1–16. doi: 10.1029/2003jd003622 CrossRefGoogle Scholar
  109. Sismanoglu R, Setzer A (2002) Avaliação inicial do desempenho do risco de fogo gerado no CPTEC. XII Congr Bras Meteorol 1991–1999Google Scholar
  110. Sismanoglu R, Setzer A (2005) Risco de fogo da vegetação na América do Sul: comparação de três versões na estiagem de 2004. XII Simpósio Bras. Sensoriamento Remoto, Goiânia, pp 3349–3355Google Scholar
  111. Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall: consequences for the planning of agricultural occupation and the protection of primary forests. AMBIO 30(7):388–396PubMedCrossRefGoogle Scholar
  112. Sorrensen CL (2008) Potential hazards of land policy: conservation, rural development and fire use in the Brazilian Amazon. Land Use Policy. doi: 10.1016/j.landusepol.2008.10.007 Google Scholar
  113. Sorrensen CL (2000) Linking smallholder land use and fire activity: examining biomass burning in the Brazilian Lower Amazon. For Ecol Manage 128:11–25CrossRefGoogle Scholar
  114. Sorrensen CL (2004) Contributions of fire use study to land use/cover change frameworks: understanding landscape change in agricultural frontiers. Hum Ecol 32:395–420CrossRefGoogle Scholar
  115. Souza C Jr, Firestone L, Silva M, Roberts D (2003) Mapping forest degradation in the Eastern Amazon from SPOT 4 through spectral mixture models. Remote Sens Environ 87:494–506. doi: 10.1016/j.rse.2002.08.002 CrossRefGoogle Scholar
  116. Souza C Jr, Roberts D, Cochrane M (2005) Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sens Environ 98:329–343CrossRefGoogle Scholar
  117. Staver AC, Archibald S, Levin SA (2011) The global extent and determinants of Savanna and forest as alternative biome states. Science 334:230–232. doi: 10.1126/science.1210465 PubMedCrossRefGoogle Scholar
  118. Tansey K, Gregoire JM, Stroppiana D et al (2004) Vegetation burning in the year 2000: global burned area estimates from SPOT VEGETATION data. J Geophys Res. doi: 10.1029/2003jd003598 Google Scholar
  119. Uhl C, Buschbacher R (1985) A disturbing synergism between cattle ranch burning practices and selective tree harvesting in the eastern Amazon. Biotropica 17:265–268CrossRefGoogle Scholar
  120. Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology 71:437–449CrossRefGoogle Scholar
  121. UNDAC (1998) Brazil fires in the state of Roraima (August 1997–April 1998). Final report, Geneva, SwitzerlandGoogle Scholar
  122. Uvo C, Repelli CA, Zebiak SE, Kushnir Y (1998) The relationships between tropical Pacific and Atlantic SST and northeast Brazil monthly precipitation. J Clim 11:551–562CrossRefGoogle Scholar
  123. Vasconcelos SS, Fearnside PM, Graça PMLA et al (2013) Variability of vegetation fires with rain and deforestation in Brazil’s state of Amazonas. Remote Sens Environ 136:199–209. doi: 10.1016/j.rse.2013.05.005 CrossRefGoogle Scholar
  124. Van der Werf GR, Randerson JT, Giglio L et al (2010) Global fire emissions and the contribution of deforestation, Savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735. doi: 10.5194/acp-10-11707-2010 CrossRefGoogle Scholar
  125. Xaud HAM, Martins FDSRV, Santos JRD (2013) Tropical forest degradation by mega-fires in the northern Brazilian Amazon. For Ecol Manage 294:97–106CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Luiz E. O. C. Aragão
    • 1
    • 2
  • Liana O. Anderson
    • 1
    • 3
  • André Lima
    • 1
  • Egidio Arai
    • 1
  1. 1.Remote Sensing DivisionNational Institute for Space Research—INPESão José dos CamposBrazil
  2. 2.College of Life and Environmental SciencesUniversity of ExeterExeterUK
  3. 3.Environmental Change InstituteUniversity of OxfordOxfordUK

Personalised recommendations