All Complete Functionalities are Reversible

  • Dakshita KhuranaEmail author
  • Daniel Kraschewski
  • Hemanta K. Maji
  • Manoj Prabhakaran
  • Amit Sahai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9666)


Crépeau and Santha, in 1991, posed the question of reversibility of functionalities, that is, which functionalities when used in one direction, could securely implement the identical functionality in the reverse direction. Wolf and Wullschleger, in 2006, showed that oblivious transfer is reversible. We study the problem of reversibility among 2-party SFE functionalities, which also enable general multi-party computation, in the information-theoretic setting.

We show that any functionality that enables general multi-party computation, when used in both directions, is reversible. In fact, we show that any such functionality can securely realize oblivious transfer when used in an a priori fixed direction. This result enables secure computation using physical setups that parties can only use in a particular direction due to inherent asymmetries in them.


Secure function evaluation Information-theoretic security UC-security Reversibility of functionalities Fixed-role reduction 


  1. 1.
    Beimel, A., Malkin, T., Micali, S.: The all-or-nothing nature of two-party secure computation. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 80–97. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Brassard, G., Crépeau, C., Robert, J.M.: Information theoretic reductions among disclosure problems. In: 27th Annual Symposium on Foundations of Computer Science, Toronto, Ontario, Canada, 27–29 October 1986, pp. 168–173. IEEE Computer Society Press (1986)Google Scholar
  3. 3.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th Annual ACM Symposium on Theory of Computing, Montréal, Québec, Canada, 19–21 May 2002, pp. 494–503. ACM Press (2002)Google Scholar
  5. 5.
    Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security assumptions (extended abstract). In: 29th Annual Symposium on Foundations of Computer Science, White Plains, New York, 24–26 October 1988, pp. 42–52. IEEE Computer Society Press (1988)Google Scholar
  6. 6.
    Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 47–59. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Crépeau, C., Sántha, M.: On the reversibility of oblivious transfer. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 106–113. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  8. 8.
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008). MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual ACM Symposium on Theory of Computing, New York City, New York, USA, 25–27 May 1987, pp. 218–229 (1987)Google Scholar
  10. 10.
    Goldreich, O., Vainish, R.: How to solve any protocol problem - an efficiency improvement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86. Springer, Heidelberg (1988)Google Scholar
  11. 11.
    Haber, S., Micali, S.: Unpublished manuscript (1986)Google Scholar
  12. 12.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Kilian, J.: Founding cryptography on oblivious transfer. In: 20th Annual ACM Symposium on Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988, pp. 20–31. ACM Press (1988)Google Scholar
  14. 14.
    Kilian, J.: A general completeness theorem for two-party games. In: 23rd Annual ACM Symposium on Theory of Computing, New Orleans, Louisiana, USA, 6–8 May 1991, pp. 553–560. ACM Press (1991)Google Scholar
  15. 15.
    Kilian, J.: More general completeness theorems for secure two-party computation. In: 32nd Annual ACM Symposium on Theory of Computing, Portland, Oregon, USA, 21–23 May 2000, pp. 316–324. ACM Press (2000)Google Scholar
  16. 16.
    Kraschewski, D., Maji, H.K., Prabhakaran, M., Sahai, A.: A full characterization of completeness for two-party randomized function evaluation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 659–676. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Kraschewski, D., Müller-Quade, J.: Completeness theorems with constructive proofs for finite deterministic 2-party functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 364–381. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Lindell, Y.: Adaptively secure two-party computation with erasures. Cryptology ePrint Archive, Report 2009/031 (2009).
  19. 19.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: A unified characterization of completeness and triviality for secure function evaluation. In: Galbraith, S.D., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 40–59. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Rabin, M.: How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard Aiken Computation Laboratory (1981)Google Scholar
  21. 21.
    Wiesner, S.: Conjugate coding. SIGACT News 15, 78–88. Google Scholar
  22. 22.
    Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, 3–5 November 1982, pp. 160–164. IEEE Computer Society Press (1982)Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Dakshita Khurana
    • 1
    Email author
  • Daniel Kraschewski
    • 2
  • Hemanta K. Maji
    • 3
  • Manoj Prabhakaran
    • 4
  • Amit Sahai
    • 1
  1. 1.Department of Computer Science, Center for Encrypted FunctionalitiesUCLALos AngelesUSA
  2. 2.TNG Technology Consulting GmbHMunichGermany
  3. 3.Department of Computer SciencePurdue UniversityWest LafayetteUSA
  4. 4.Department of Computer ScienceUniversity of IllinoisUrbana-ChampaignUSA

Personalised recommendations