Advertisement

Constrained Pseudorandom Functions for Unconstrained Inputs

  • Apoorvaa DeshpandeEmail author
  • Venkata KoppulaEmail author
  • Brent Waters
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9666)

Abstract

A constrained pseudo random function (PRF) behaves like a standard PRF, but with the added feature that the (master) secret key holder, having secret key K, can produce a constrained key, \(K\{f\}\), that allows for the evaluation of the PRF on all inputs satisfied by the constraint f. Most existing constrained PRF constructions can handle only bounded length inputs. In a recent work, Abusalah et al. [1] constructed a constrained PRF scheme where constraints can be represented as Turing machines with unbounded inputs. Their proof of security, however, requires risky “knowledge type” assumptions such as differing inputs obfuscation for circuits and SNARKs.

In this work, we construct a constrained PRF scheme for Turing machines with unbounded inputs under weaker assumptions, namely, the existence of indistinguishability obfuscation for circuits (and injective pseudorandom generators).

References

  1. 1.
    Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Constrained prfs for unbounded inputs. IACR Cryptology ePrint Archive 2014, 840 (2014). http://eprint.iacr.org/2014/840
  2. 2.
    Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. IACR Cryptology ePrint Archive 2015, 173 (2015). http://eprint.iacr.org/2015/173
  3. 3.
    Ananth, P., Sahai, A.: Functional encryption for turing machines. Cryptology ePrint Archive, Report 2015/776 (2015). http://eprint.iacr.org/
  4. 4.
    Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg (2015). http://dx.doi.org/10.1007/978-3-662-46497-7_2 CrossRefGoogle Scholar
  5. 5.
    Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings and their applications. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, 14–17 June 2015, pp. 439–448 (2015). http://doi.acm.org/10.1145/2746539.2746574
  6. 6.
    Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. IACR Cryptology ePrint Archive 2015, 163 (2015)Google Scholar
  7. 7.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). http://dx.doi.org/10.1007/978-3-662-46497-7_1 CrossRefGoogle Scholar
  11. 11.
    Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling and indistinguishability obfuscation for RAM programs. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, 14–17 June 2015, pp. 429–437 (2015). http://doi.acm.org/10.1145/2746539.2746621
  12. 12.
    Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom functions: Verifiable and delegatable. Cryptology ePrint Archive, Report 2014/522 (2014). http://eprint.iacr.org/
  13. 13.
    Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of constrained prfs. IACR Cryptology ePrint Archive 2014, 416 (2014)Google Scholar
  14. 14.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013)Google Scholar
  16. 16.
    Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs obfuscation and extractable witness encryption with auxiliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. Cryptology ePrint Archive, Report 2014/309 (2014). http://eprint.iacr.org/
  18. 18.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: FOCS, pp. 464–479 (1984)Google Scholar
  19. 19.
    Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained pseudorandom functions. IACR Cryptology ePrint Archive 2014, 720 (2014). http://eprint.iacr.org/2014/720
  20. 20.
    Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudorandom functions in the standard model. IACR Cryptology ePrint Archive 2014, 521 (2014). http://eprint.iacr.org/2014/521
  21. 21.
    Hubacek, P., Wichs, D.: On the communication complexity of secure function evaluation with long output. In: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel, 11–13 January 2015, pp. 163–172 (2015)Google Scholar
  22. 22.
    Khurana, D., Rao, V., Sahai, A.: Multi-party key exchange for unbounded parties from indistinguishability obfuscation. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 52–75. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_3 CrossRefGoogle Scholar
  23. 23.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: ACM Conference on Computer and Communications Security, pp. 669–684 (2013)Google Scholar
  24. 24.
    Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing machines with unbounded memory. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, NY, USA, pp. 419–428 (2015). http://doi.acm.org/10.1145/2746539.2746614
  25. 25.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC, pp. 475–484 (2014)Google Scholar
  26. 26.
    Zhandry, M.: Adaptively secure broadcast encryption with small system parameters (2014)Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.Brown UniversityProvidenceUSA
  2. 2.University of Texas at AustinAustinUSA

Personalised recommendations