Advertisement

New Negative Results on Differing-Inputs Obfuscation

  • Mihir BellareEmail author
  • Igors Stepanovs
  • Brent Waters
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9666)

Abstract

We provide the following negative results for differing-inputs obfuscation (diO): (1) If sub-exponentially secure one-way functions exist then sub-exponentially secure diO for TMs does not exist (2) If in addition sub-exponentially secure iO exists then polynomially secure diO for TMs does not exist.

Notes

Acknowledgments

Bellare and Stepanovs were supported in part by NSF grants CNS-1526801 and CNS-1228890, ERC Project ERCC FP7/615074 and a gift from Microsoft. Waters was supported in part by NSF grants CNS-1228599 and CNS-1414082, DARPA SafeWare, a Google Faculty Research award, the Alfred P. Sloan Fellowship, a Microsoft Faculty Fellowship and a Packard Foundation Fellowship. We thank the Eurocrypt 2016 reviewers for their comments.

References

  1. 1.
    Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689 (2013). http://eprint.iacr.org/2013/689
  2. 2.
    Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  3. 3.
    Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from different assumptions. In: Schulman, L.J. (ed.) 42nd ACM STOC, pp. 171–180. ACM Press, June 2010Google Scholar
  4. 4.
    Backes, M., Dagdelen, O., Fischlin, M., Gajek, S., Meiser, S., Schröder, D.: Operational signature schemes. Cryptology ePrint Archive, Report 2014/820 (2014). http://eprint.iacr.org/2014/820
  5. 5.
    Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. Cryptology ePrint Archive, Report 2013/408 (2013). http://eprint.iacr.org/2013/408
  6. 6.
    Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Bellare, M.: A note on negligible functions. J. Cryptol. 15(4), 271–284 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    Bellare, M., Rogaway, P.: Collision-resistant hashing: towards making UOWHFs practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way function and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 102–121. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-inputs obfuscation. Cryptology ePrint Archive, Report 2016/162 (2016). http://eprint.iacr.org/2016/162
  14. 14.
    Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A., Tromer, E.: The hunting of the SNARK. Cryptology ePrint Archive, Report 2014/580 (2014). http://eprint.iacr.org/2014/580
  15. 15.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: Goldwasser, S. (ed.) ITCS 2012, pp. 326–349. ACM, January 2012Google Scholar
  16. 16.
    Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings and their applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 439–448. ACM Press, June 2015Google Scholar
  17. 17.
    Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and applications to resettable cryptography. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 241–250. ACM Press, June 2013Google Scholar
  18. 18.
    Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 474–502. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49096-9_20 CrossRefGoogle Scholar
  19. 19.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  21. 21.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  22. 22.
    Brzuska, C., Mittelbach, A.: Using indistinguishability obfuscation via UCEs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 122–141. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling and indistinguishability obfuscation for RAM programs. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 429–437. ACM Press, June 2015Google Scholar
  24. 24.
    Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  25. 25.
    Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom functions: Verifiable and delegatable. Cryptology ePrint Archive, Report 2014/522 (2014). http://eprint.iacr.org/2014/522
  26. 26.
    Fuchsbauer, G.: Constrained verifiable random functions. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 95–114. Springer, Heidelberg (2014)Google Scholar
  27. 27.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013Google Scholar
  28. 28.
    Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs obfuscation and extractable witness encryption with auxiliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  29. 29.
    Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM computation. In: 55th FOCS, pp. 404–413. IEEE Computer Society Press, October 2014Google Scholar
  30. 30.
    Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. In: Guruswami, V. (ed.) 56th FOCS, pp. 151–170. IEEE Computer Society Press, October 2015Google Scholar
  31. 31.
    Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance independent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 426–443. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  32. 32.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary input. In: 46th FOCS, pp. 553–562. IEEE Computer Society Press, October 2005Google Scholar
  34. 34.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 545–554. ACM Press, June 2013Google Scholar
  36. 36.
    Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  37. 37.
    Haitner, I., Holenstein, T., Reingold, O., Vadhan, S., Wee, H.: Universal one-way hash functions via inaccessible entropy. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 616–637. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  38. 38.
    Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 668–697. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  39. 39.
    Katz, J., Koo, C.-Y.: On constructing universal one-way hash functions from arbitrary one-way functions. Cryptology ePrint Archive, Report 2005/328 (2005). http://eprint.iacr.org/2005/328
  40. 40.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 669–684. ACM Press, November 2013Google Scholar
  41. 41.
    Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing machines with unbounded memory. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 419–428. ACM Press, June 2015Google Scholar
  42. 42.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: 21st ACM STOC, pp. 33–43. ACM Press, May 1989Google Scholar
  43. 43.
    Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  44. 44.
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: 22nd ACM STOC, pp. 387–394. ACM Press, May 1990Google Scholar
  45. 45.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press, May/June 2014Google Scholar
  46. 46.
    Shoup, V.: A composition theorem for universal one-way hash functions. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  47. 47.
    Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of California San DiegoSan DiegoUSA
  2. 2.Department of Computer ScienceUniversity of Texas at AustinAustinUSA

Personalised recommendations