Advertisement

Two Round Multiparty Computation via Multi-key FHE

  • Pratyay MukherjeeEmail author
  • Daniel Wichs
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9666)

Abstract

We construct a general multiparty computation (MPC) protocol with only two rounds of interaction in the common random string model, which is known to be optimal. In the honest-but-curious setting we only rely on the learning with errors (LWE) assumption, and in the fully malicious setting we additionally assume the existence of non-interactive zero knowledge arguments (NIZKs). Previously, Asharov et al. (EUROCRYPT ’12) showed how to achieve three rounds based on LWE and NIZKs, while Garg et al. (TCC ’14) showed how to achieve the optimal two rounds based on indistinguishability obfuscation, but it was unknown if two rounds were possible under standard assumptions without obfuscation.

Our approach relies on multi-key fully homomorphic encryption (MFHE), introduced by Lopez-Alt et al. (STOC ’12), which enables homomorphic computation over data encrypted under different keys. We present a construction of MFHE based on LWE that significantly simplifies a recent scheme of Clear and McGoldrick (CRYPTO ’15). We then extend this construction to allow for a one-round distributed decryption of a multi-key ciphertext. Our entire MPC protocol consists of the following two rounds:
  1. 1.

    Each party individually encrypts its input under its own key and broadcasts the ciphertext. All parties can then homomorphically compute a multi-key encryption of the output.

     
  2. 2.

    Each party broadcasts a partial decryption of the output using its secret key. The partial decryptions can be combined to recover the output in plaintext.

     

References

  1. 1.
    Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. In: IEEE Conference on Computational Complexity, pp. 260–274 (2005)Google Scholar
  3. 3.
    Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, pp. 483–501. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Asharov, G., Jain, A., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold fhe. Cryptology ePrint Archive, Report 2011/613 2011. http://eprint.iacr.org/
  5. 5.
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: STOC, pp. 503–513 (1990)Google Scholar
  6. 6.
    Bendlin, R., Damgård, I.: Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 201–218. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. In: ITCS (2012)Google Scholar
  9. 9.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) lwe. In: FOCS (2011)Google Scholar
  10. 10.
    Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  11. 11.
    Cramer, R., Damgård, I.B., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Damgård, I.B., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Matthew, K.: Franklin and stuart haber: joint encryption and message-efficient secure computation. J. Cryptology 9(4), 217–232 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. 15.
    Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of secure computation. Manuscript, October 2015Google Scholar
  16. 16.
    Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  17. 17.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  18. 18.
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)Google Scholar
  20. 20.
    Goyal, V.: Constant round non-malleable protocols using one way functions. In: STOC, pp. 695–704 (2011)Google Scholar
  21. 21.
    Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with applications to round-efficient secure computation. In: FOCS, pp. 294–304 (2000)Google Scholar
  23. 23.
    Jakobsson, M., Juels, A.: Mix and match: secure function evaluation via ciphertexts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Katz, J., Ostrovsky, R., Smith, A.: Round Efficiency of Multi-party Computation with a Dishonest Majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, pp. 578–595. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way function. In: STOC, pp. 705–714 (2011)Google Scholar
  27. 27.
    Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 171–189. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi, T. (eds.) Proceedings of the 44th Symposium on Theory of Computing Conference, STOC, New York, NY, USA, 19–22 May 2012, pp. 1219–1234. ACM (2012)Google Scholar
  29. 29.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. Cryptology ePrint Archive, Report 2015/345 (2015). http://eprint.iacr.org/
  31. 31.
    Myers, S., Sergi, M., Shelat, A.: Threshold fully homomorphic encryption and secure computation. In: eprint /454 (2011)Google Scholar
  32. 32.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: STOC, pp. 333–342 (2009)Google Scholar
  33. 33.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)Google Scholar
  34. 34.
    Andrew Chi-Chih Yao: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164 (1982)Google Scholar
  35. 35.
    Andrew Chi-Chih Yao: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.Northeastern UniversityBostonUSA

Personalised recommendations