Advertisement

Indifferentiability of Confusion-Diffusion Networks

  • Yevgeniy DodisEmail author
  • Martijn Stam
  • John Steinberger
  • Tianren Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9666)

Abstract

We show the first positive results for the indifferentiability security of the confusion-diffusion networks (which are extensively used in the design of block ciphers and hash functions). In particular, our result shows that a constant number of confusion-diffusion rounds is sufficient to extend the domain of a public random permutation.

Keywords

Random Permutation Block Cipher Query Complexity Random Oracle Model Domain Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In: Smart [31] pp. 181–197Google Scholar
  3. 3.
    Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on the ASASA structure: black-box, white-box, and public-key (Extended Abstract). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Chakraborty, D., Sarkar, P.: A new mode of encryption providing a tweakable strong pseudo-random permutation. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 293–309. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Chakraborty, D., Sarkar, P.: HCH: a new tweakable enciphering scheme using the hash-encrypt-hash approach. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-box cryptography and an AES implementation. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 250–270. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES implementation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 1–15. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Dodis, Y., Tianren, L., Stam, M., Steinberger, J.: Indifferentiability of Confusion-Diffusion Networks, IACR eprint archive 2015/680. (Full version of this paper.)Google Scholar
  9. 9.
    Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgård revisited: how to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Coron, J.-S., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the ideal cipher. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 273–289. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher model are equivalent. In: Wagner [32], pp. 1–20Google Scholar
  12. 12.
    Dodis, Y., Pietrzak, K., Puniya, P.: A new mode of operation for block ciphers and length-preserving macs. In: Smart [31], pp. 198–219Google Scholar
  13. 13.
    Dodis, Y., Reyzin, L., Rivest, R.L., Shen, E.: Indifferentiability of permutation-based compression functions and tree-based modes of operation, with applications to MD6. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 104–121. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging merkle-damgård for practical applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Feistel, H.: Cryptographic coding for data-bank privacy. IBM Technical report RC-2827, 18 March 1970Google Scholar
  16. 16.
    Fluhrer, S.R., McGrew, D.A.: The extended codebook (XCB) mode of operation. Technical report 2004/078, IACR eprint archive (2004)Google Scholar
  17. 17.
    Halevi, S.: Invertible universal hashing and the TET encryption mode. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 412–429. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle model and the ideal cipher model, revisited. In: Fortnow, L., Vadhan, S.P. (eds.), Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, pp. 89–98. ACM, 6–8 June 2011Google Scholar
  19. 19.
    Lampe, R., Seurin, Y.: How to construct an ideal cipher from a small set of public permutations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 444–463. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Luby, M., Rackoff, C.: How to construct pseudorandom permutations and pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Maurer, U.M., Tessaro, S.: Domain extension of public random functions: beyond the birthday barrier. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 187–204. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Miles, E., Viola, E.: Substitution-permutation networks, pseudorandom functions, and natural proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 68–85. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-Rackoff revisited. J. Cryptology 12(1), 29–66 (1999). Preliminary Version: STOCMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Rogaway, P., Steinberger, J.P.: Constructing cryptographic hash functions from fixed-key blockciphers. In: Wagner [32], pp. 433–450Google Scholar
  27. 27.
    Seurin, Y.: Primitives et protocoles cryptographiques à sécurité prouvée. Ph.D. thesis, Université de Versailles Saint-Quentin-en-Yvelines, France (2009)Google Scholar
  28. 28.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Technical J. 28(4), 656–715 (1949). www.cs.ucla.edu/jkong/research/security/shannon.html, www3.edgenet.net/dcowley/docs.html MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Shrimpton, T., Stam, M.: Building a collision-resistant compression function from non-compressing primitives. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 643–654. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  30. 30.
    Smart, N.P. (ed.): EUROCRYPT 2008. LNCS, vol. 4965. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  31. 31.
    Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Wang, P., Feng, D., Wu, W.: HCTR: a variable-input-length enciphering mode. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  • Yevgeniy Dodis
    • 1
    Email author
  • Martijn Stam
    • 2
  • John Steinberger
    • 3
  • Tianren Liu
    • 4
  1. 1.Courant Institute, New York UniversityNew YorkUSA
  2. 2.Department of Computer ScienceUniversity of BristolBristolUK
  3. 3.Institute for Interdisciplinary Information Sciences, Tsinghua UniversityBeijingChina
  4. 4.MITCambridgeUSA

Personalised recommendations