Advertisement

Computationally Binding Quantum Commitments

  • Dominique UnruhEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9666)

Abstract

We present a new definition of computationally binding commitment schemes in the quantum setting, which we call “collapse-binding”. The definition applies to string commitments, composes in parallel, and works well with rewinding-based proofs. We give simple constructions of collapse-binding commitments in the random oracle model, giving evidence that they can be realized from hash functions like SHA-3. We evidence the usefulness of our definition by constructing three-round statistical zero-knowledge quantum arguments of knowledge for all NP languages.

Notes

Acknowledgements

We thank Ansis Rosmanis for discussions on insecure commitments based on collision-resistant hash functions, and Serge Fehr for discussions on the DFRSS-binding definition. This research by the European Social Fund’s Doctoral Studies and Internationalisation Programme DoRa, by the European Regional Development Fund through the Estonian Center of Excellence in Computer Science, EXCS, by European Social Fund through the Estonian Doctoral School in Information and Communication Technology, and by the Estonian ICT program 2011–2015 (3.2.1201.13-0022).

References

  1. 1.
    Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems (the hardness of quantum rewinding). In: FOCS 2014, pp. 474–483. IEEE (2014)Google Scholar
  2. 2.
    Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical quantum oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 351–366. Springer, Heidelberg (1992)Google Scholar
  3. 3.
    Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Brassard, G., Crépeau, C., Jozsa, R., Langlois, D.: A quantum bit commitment scheme provably unbreakable by both parties. In: FOCS 1993, pp. 362–371. IEEE (1993)Google Scholar
  5. 5.
    Cramer, R., Damgård, I.B., Schoenmakers, B.: Proof of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Crépeau, C., Dumais, P., Mayers, D., Salvail, L.: Computational collapse of quantum state with application to oblivious transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 374–393. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Crépeau, C., Légaré, F., Salvail, L.: How to convert the flavor of a quantum bit commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 60–77. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Crépeau, C., Salvail, L., Simard, J.-R., Tapp, A.: Two provers in isolation. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 407–430. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Damgård, I., Fehr, S., Lunemann, C., Salvail, L., Schaffner, C.: Improving the security of quantum protocols via commit-and-open. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 408–427. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Damgård, I.B., Fehr, S., Renner, R.S., Salvail, L., Schaffner, C.: A tight high-order entropic quantum uncertainty relation with applications. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 360–378. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Damgård, I.B., Fehr, S., Salvail, L.: Zero-knowledge proofs and string commitments withstanding quantum attacks. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 254–272. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Damgård, I., Lunemann, C.: Quantum-secure coin-flipping and applications. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 52–69. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Dumais, P., Mayers, D., Salvail, L.: Perfectly concealing quantum bit commitment from any quantum one-way permutation. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 300–315. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Halevi, S., Micali, S.: Practical and provably-secure commitment schemes from collision-free hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 201–215. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Mayers, D.: Unconditionally secure quantum bit commitment is impossible. PRL 78(17), 3414–3417 (1997)CrossRefGoogle Scholar
  16. 16.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 10th Anniv. edn. Cambridge University Press, Cambridge (2010)Google Scholar
  17. 17.
    NIST: SHA-3 standard: Permutation-based hash and extendable-output functions. Draft FIpPS 202 (2014)Google Scholar
  18. 18.
    Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Unruh, D.: Computationally binding quantum commitments. IACR ePrint 2015/361 (2015). (full version of this paper)Google Scholar
  21. 21.
    Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015)Google Scholar
  22. 22.
    Unruh, D.: Quantum proofs of knowledge. IACR ePrint 2010/212/20150211:174234 (2015). updated full version of [19]Google Scholar
  23. 23.
    Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1), 25–58 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zhandry, M.: A note on the quantum collision and set equality problems. Quantum Information & Computation 15(7&8), 557–567 (2015)MathSciNetGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.University of TartuTartuEstonia

Personalised recommendations