Skip to main content

Optimization of 2D LA-ICP-MS Mapping of Glass with Decorative Colored Features: Application to Analysis of a Polychrome Vessel Fragment from the Iron Age

  • Chapter
  • First Online:
Recent Advances in Laser Ablation ICP-MS for Archaeology

Part of the book series: Natural Science in Archaeology ((ARCHAEOLOGY))

Abstract

2D elemental mapping of glass surfaces by LA-ICP-MS is an interesting technique to elucidate past technologies, establish provenance or understand deterioration processes of ancient, polychrome glass by visualization of the elemental distribution of the glass surface. However, selection of the appropriate LA-ICP-MS conditions for generation of high-quality elemental maps with the highest spatial resolution, lowest signal-to-noise ratio and shortest analysis time is normally a trial-and-error process. In this chapter a computational-experimental strategy is described to optimize the LA-ICP-MS conditions for 2D elemental mapping of polychrome glass by finding the best balance between fluence, beam diameter, repetition rate, scanning speed, gas flow rate and acquisition time. To aid in the initial selection of the optimal LA-ICP-MS conditions for spatial resolution and analysis time, a digital image of the glass was subjected to virtual 2D mapping, using existing software which simulates the actual LA-ICP-MS mapping process. To verify whether these initial conditions would result in an acceptable signal-to-noise ratio during the actual LA-ICP-MS mapping process, they were used to experimentally determine the detection limits for each element via a simple line scan on a “blank” glass, and consequently predict the noise floor in the maps. This strategy was successfully validated (using a modern murrina) and applied to a polychrome glass from the Iron Age yielding more insight into its elemental composition and the mineral sources involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts A, Velde B, Janssens K, Dijkman W (2003) Change in silica source in Roman and post-Roman glass. Spectrochim Acta B 58:659–667

    Article  Google Scholar 

  • Alberta S, Gianmario M, Valentina P (2011) The stained glass window of the southern transept of St. Anthony’s Basilica (Padova, Italy): study of glasses and grisaille paint layers. Spectrochim Acta B 66:81–87

    Article  Google Scholar 

  • Arletti R, Vezzalini G, Quartieri S, Ferrari D, Merlini M, Cotte M (2008) Polychrome glass from Etruscan sites: first non-destructive characterization with synchrotron μ-XRF, μ-XANES and XRPD. Appl Phys A 92:127–135

    Article  Google Scholar 

  • Arletti R, Maiorano C, Ferrari D, Vezzalini G, Quartieri S (2010) The first archaeometric data on polychrome Iron Age glass from sites located in Northern Italy. J Archaeol Sci 37:703–712

    Article  Google Scholar 

  • Barkoudah Y, Henderson J (2006) Plant ashes from Syria and the manufacture of ancient glass: ethnographic and scientific aspects. J Glass Stud 48:297–321

    Google Scholar 

  • Baxter MJ, Cool HEM, Jackson CM (2005) Further studies in the compositional variability of colourless Romano-British vessel glass. Archaeometry 47:47–68

    Article  Google Scholar 

  • Behrends T, Kleingeld P (2009) Bench-top micro-XRF – a useful apparatus for geochemists? Geochemical News 138

    Google Scholar 

  • Brady GS, Clauser HR, Vaccari JA (2002) Materials handbook, 15th edn. McGraw-Hill, New York, NY

    Google Scholar 

  • Carmona N, Ortega-Feliu I, Gomez-Tubio B, Villegas MA (2010) Advantages and disadvantages of PIXE/PIGE, XRF and EDX spectrometries applied to archaeometric characterisation of glasses. Mater Charact 61:257–267

    Article  Google Scholar 

  • Duwe S, Neff H (2007) Glaze and slip pigment analyses of Pueblo IV period ceramics from east-central Arizona using time of flight-laser ablation-inductively coupled plasma-mass spectrometry (TOF-LA-ICP-MS). J Archaeol Sci 34:403–414

    Article  Google Scholar 

  • Freestone IC (2006) Glass production in Late Antiquity and the Early Islamic period: a geochemical perspective. In: Maggetti M, Messiga B (eds) Geomaterials in cultural heritage. Geological Society of London, London, pp 201–216

    Google Scholar 

  • Freestone IC, Greenwood R, Gorin-Rosen Y (2002) Byzantine and early Islamic glassmaking in the eastern Mediterranean: production and distribution of primary glass. In: Kordas G (ed) Hyalos-Vitrum-Glass. History, technology and conservation of glass and vitreous materials in the Hellenic world. 1st International Conference, Rhodes, Greece. Glasnet, Athens, p 167–174

    Google Scholar 

  • Gratuze B (1997) L’apport des analyses de verres archéologiques: etudes de cas. In: Techne, Verres–Emaux–Glaçures. Paris Laboritoire de recherche des musées de France n. 6, p 8–18

    Google Scholar 

  • Gratuze B, Picon M (2006) Utilisation par l’industrie verrière des sels d’aluns des oasis égyptiennes au début du premier millénaire avant notre ère. In: Borgard P, Brun J-P, Picon M (eds) L’Alun de Mediterranie. Naples/Aix-en-Provence, Centres Jean Bérard et Camille Jullian, Collection du Centre Jean Bérard 23, p 269–276

    Google Scholar 

  • Gratuze B, Soulier I, Barrandon J-N, Foy D (1992) De l’origine du cobalt dans les verres. Revue d’Archéométrie 16:97–108

    Article  Google Scholar 

  • Gratuze B, Soulier I, Blet M, Vallari L (1996) De l’origine du cobalt: du verre à la céramique. Revue d’Archéométrie 20:77–94

    Article  Google Scholar 

  • Gratuze B, Blet-Lemarquand M, Barradon J-N (2001) Mass spectrometry with laser sampling: a new tool to characterize archaeological materials. J Radioanal Nucl Chem 247:645–656

    Article  Google Scholar 

  • Hamilton DL, Hopkins TC (1995) Preparation of glasses for use as chemical standards involving the coprecipitated gel technique. Analyst 120:1373–1377

    Article  Google Scholar 

  • Harden DB, Tatton-Brown VA (1981) Catalogue of Greek and Roman glass in the British Museum, vol 1, Core and rod-formed vessels and pendants and Mycenaean cast objects. British Museum Publications, London

    Google Scholar 

  • Henderson J (1985) The raw materials of early glass production. Oxford J Archaeol 4:267–291

    Article  Google Scholar 

  • Henderson J (2000) The science and archaeology of materials: an investigation of inorganic materials. Routledge, New York, NY

    Google Scholar 

  • Henderson J, Warren SE (1983) Analysis of prehistoric lead glass. In: Aspinall A, Warren SE (eds) Proceedings of 22nd International Symposium on Archaeometry. Schools of Physics and Archaeological Sciences, Bradford, pp 168–180

    Google Scholar 

  • Henderson J, McLoughlin SD, McPhail DS (2004) Radical change in Islamic glass technology: evidence for conservatism and experimentation with new glass recipes from early and middle Islamic Raqqa, Syria. Archaeometry 46:439–468

    Article  Google Scholar 

  • Jackson CM (2005) Making colourless glass in the Roman period. Archaeometry 47:763–780

    Article  Google Scholar 

  • Lahlil S, Biron I, Cotte M, Susini J, Menguy N (2010a) Synthesis of calcium antimonate nano-crystals by the 18th Dynasty Egyptian glassmaker. Appl Phys A 98:1–8

    Article  Google Scholar 

  • Lahlil S, Biron I, Cotte M, Susini J, Menguy N (2010b) New insight on the in situ crystallization of calcium antimonate opacified glass during the Roman period. Appl Phys A 100:683–692

    Article  Google Scholar 

  • Liu Y, Hu Z, Gao S, Gunther D, Xu J, Gao C, Haihong C (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43

    Article  Google Scholar 

  • Lombardo T, Gentaz L, Verney-Carron A, Chabas A, Loiseb C, Neff D, Leroy E (2013) Characterization of complex alteration layers in medieval glasses. Corros Sci 72:10–19

    Article  Google Scholar 

  • Mass JL, Wypyski MT, Stone RE (2002) Malkata and lisht glassmaking technologies: towards a specific link between second millennium B.C. metallurgist and glassmakers. Archaeometry 44:67–82

    Article  Google Scholar 

  • Mata MP, Peacor DR, Gallart-Marti MD (2002) Transmission electron microscopy (TEM) applied to ancient pottery. Archaeometry 44:155–176

    Article  Google Scholar 

  • Mirti P, Pace M, Malandrino M, Negro Ponzi M (2009) Sasanian glass from Veh Ardašīr: new evidences by ICP-MS analysis. J Archaeol Sci 36:1061–1069

    Article  Google Scholar 

  • Naes BE, Umpierrez S, Ryland S, Barnett C, Almirall JR (2008) A comparison of laser ablation inductively coupled plasma mass spectrometry, micro X-ray fluorescence spectroscopy, and laser induced breakdown spectroscopy for the discrimination of automotive glass. Spectrochim Acta B 63:1145–1150

    Article  Google Scholar 

  • Nicholson PT, Henderson J (eds) (2000) Glass in ancient Egyptian materials and technology. Cambridge University Press, Cambridge

    Google Scholar 

  • Panighello S, Orsega EF, van Elteren JT, Šelih VS (2012) Analysis of polychrome Iron Age glass vessels from Mediterranean I, II and III groups by LA-ICP-MS. J Archaeol Sci 39(9):2945–2955

    Article  Google Scholar 

  • Panighello S, Van Elteren JT, Orsega EF, Moretto LM (2015) Laser ablation-ICP-MS depth profiling to study ancient glass surface degradation. Anal Bioanal Chem. doi:10.1007/s00216-015-8568-7

    Google Scholar 

  • Peake RN, Freestone IC (2012) Cross-craft interactions between metal and glass working: slag additions to early Anglo-Saxon red glass. In: Meulebroeck W, Nys K, Vanclooster D (eds) Integrated approaches to the study of historical glass – IAS12. Proceedings of SPIE 8422, 842204, pp 1–12

    Google Scholar 

  • Pérez-Arantegui J, Resano M, García-Ruiz E, Vanhaecke F, Roldán C, Ferrero J, Coll J (2008) Characterization of cobalt pigments found in traditional Valencian ceramics by means of laser ablation-inductively coupled plasma mass spectrometry and portable X-ray fluorescence spectrometry. Talanta 74:1271–1280

    Article  Google Scholar 

  • Phipps C, Luke J, Funk D, Moore D, Glownia J, Lippert T (2006) Laser impulse coupling at 130 fs. Appl Surf Sci 252:4838–4844

    Article  Google Scholar 

  • Reade W, Freestone IC, Bourke S (2009) Innovation and continuity in Bronze and Iron Age glass from Pella in Jordan. In: Janssens K, Degryse P, Caen J, Van’t dack L (eds) Annales du 17 Congrès de l’Association Internationale pour l’Histoire du Verre, Anvers, 2006. AIHV and University Press Antwerp, Brussels, p 47–54

    Google Scholar 

  • Rehren T, Shortland AJ (2003) Comments on J.L. Mass, M.T. Wypyski and R.E. Stone, Malkata and Lisht glassmaking technologies: towards a specific link between second millennium B.C. metallurgists and glassmakers and reply. Archaeometry 44:67–82

    Google Scholar 

  • Robertshaw P, Benco N, Wood M, Dussubieux L, Melchiorre E, Ettahiri A (2010) Chemical analysis of glass beads from medieval Al-Basra (Morocco). Archaeometry 52:355–379

    Article  Google Scholar 

  • Rusk B, Koenig A, Lowers H (2011) Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry. Am Mineral 96:703–708

    Article  Google Scholar 

  • Rutten FJM, Briggs D, Henderson J, Roe MJ (2009) The application of time-of-flight secondary ion mass spectrometry (ToF-SIMS) to the characterization of opaque ancient glasses. Archaeometry 51:966–986

    Article  Google Scholar 

  • Santopadre P, Verità M (2000) Analyses of the production technologies of Italian vitreous materials of the Bronze Age. J Glass Stud 42:25–40

    Google Scholar 

  • Sayre EV (1963) The intentional use of antimony and manganese in ancient glasses. In: Matson FR, Rindone GE (eds) Advances in glass technology, Part 2. Plenum Press, New York, NY, pp 263–282

    Google Scholar 

  • Sayre EV, Smith RW (1967) Some materials of glass manufactory in antiquity. In: Levey M (ed) Archeological chemistry: 3rd symposium on archeological chemistry, Atlantic City, New Jersey. University of Pennsylvania Press, Philadelphia, PA, pp 279–312

    Google Scholar 

  • Šelih VS, Van Elteren JT (2011) Quantitative multi-element mapping of ancient glass using a simple and robust LA-ICP-MS rastering procedure in combination with image analysis. Anal Bioanal Chem 401:745–755

    Article  Google Scholar 

  • Shortland AJ (2002) The use and origin of antimonate colorants in early Egyptian glass. Archaeometry 44:517–530

    Article  Google Scholar 

  • Shortland AJ (2004) Evaporites of the Wadi Natrun: seasonal and annual variation and its implication for ancient exploitation. Archaeometry 46:497–516

    Article  Google Scholar 

  • Shortland AJ, Schroeder H (2009) Analysis of first millennium BC glass vessels and beads from the Pichvnari Necropolis, Georgia. Archaeometry 51:947–965

    Article  Google Scholar 

  • Shortland AJ, Nicholson PT, Jackson CM (2000) Lead isotopic analysis of Eighteenth-Dynasty Egyptian eyepaints and lead antimonate colorants. Archaeometry 42:153–157

    Article  Google Scholar 

  • Shortland AJ, Schachner L, Freestone I, Tite M (2006) Natron as a flux in the early vitreous materials industry: sources, beginnings and reason for decline. J Archaeol Sci 33:521–530

    Article  Google Scholar 

  • Silvestri A, Molin G, Salviulo G (2008) The colourless glass of Iulia Felix. J Archaeol Sci 35:331–341

    Article  Google Scholar 

  • Šmit Ž, Knific T, Jezeršek D, Istenič J (2012) Analysis of early medieval glass beads – glass in the transition period. Nucl Instr Meth B 278:8–14

    Article  Google Scholar 

  • Šmit Ž, Milavec T, Fajfar H, Rehren T, Lankton JW, Gratuze B (2013) Analysis of glass from the post-Roman settlement Tonovcov grad (Slovenia) by PIXE-PIGE and LA-ICP-MS. Nucl Instr Meth Phys Res B 311:53–59

    Article  Google Scholar 

  • Sokaras D, Karydas AG, Oikonomou A, Zacharias N, Beltsios K, Kantarelou V (2009) Combined elemental analysis of ancient glass beads by means of ion beam, portable XRF, and EPMA techniques. Anal Bioanal Chem 395:2199–2209

    Article  Google Scholar 

  • Tite MS, Shortland A, Maniatis Y, Kavoussanaki D, Harris SA (2006) The composition of the soda-rich and mixed alkali plant ashes used in the production of glass. J Archaeol Sci 33:1284–1292

    Article  Google Scholar 

  • Tite MS, Pradell T, Shortland AJ (2008) Discovery, production and use of Tin-based opacifiers in glasses, enamels and glazes from the Late Iron Age onwards: a reassessment. Archaeometry 50:67–84

    Article  Google Scholar 

  • Towle A, Henderson J, Bellintani P, Gambacurta G (2001) Frattesina and Adria: report of scientific analyses of early glass from the Veneto. PADUSA, Bollettino del Centro Polesano di studi storici, archeologici ed etnografici; anno XXXVII, Rovigo, p 7–68

    Google Scholar 

  • Triglav J, Van Elteren JT, Šelih VS (2010) Basic modeling approach to optimize imaging by laser ablation ICPMS. Anal Chem 82:8153–8160

    Article  Google Scholar 

  • Turner WES (1956) Studies in ancient glasses and glassmaking processes. Part V. Raw materials and melting processes. J Soc Glass Technol 40:277–300

    Google Scholar 

  • Turner WES, Rooksby HP (1961) Further historical studies based on X-ray diffraction methods of the reagents employed in making opal and opaque glasses. Jahrbuch des Römisch – Germanischen Zentral – Museums 8:1–16

    Google Scholar 

  • van Elteren JT, Tennent NH, Šelih VS (2009) Multi-element quantification of ancient/historic glasses by laser ablation inductively coupled plasma mass spectrometry using sum normalization calibration. Anal Chim Acta 644:1–9

    Article  Google Scholar 

  • van Elteren JT, Izmer A, Šala M, Orsega EF, Šelih VS, Panighello S, Vanhaecke F (2013) 3D laser ablation-ICP-mass spectrometry mapping for the study of surface layer phenomena – a case study for weathered glass. J Anal Atom Spectrom 28:994–1004

    Article  Google Scholar 

  • Van Malderen SJM, van Elteren JT, Vanhaecke F (2015) Development of a fast laser ablation-inductively coupled plasma-mass spectrometry cell for sub-μm scanning of layer materials. J Anal Atom Spectrom 30:119–125

    Article  Google Scholar 

  • Verità M, Renier A, Zecchin S (2002) Chemical analyses of ancient glass findings excavated in the Venetian lagoon. J Cult Herit 3:261–271

    Article  Google Scholar 

  • Wagner B, Jedral W (2011) Open ablation cell for LA-ICP-MS investigations of historic objects. J Anal Atom Spectrom 26:2058–2063

    Article  Google Scholar 

  • Walton MS, Shortland AJ, Kirk S, Degryse P (2009) Evidence for the trade of Mesopotamian and Egyptian glass to Mycenaean Greece. J Archeolog Sci 36:1496–1503

    Article  Google Scholar 

  • Wang HAO, Grolimund D, Giesen C, Borca CN, Shaw-Stewart JRH, Bodenmiller B, Günther D (2013) Fast chemical imaging at high spatial resolution by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 85:10107–10116

    Article  Google Scholar 

  • Woodhead JD, Hellstrom J, Hergt JM, Greig A, Maas R (2007) Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry. Geostand Geoanal Res 31:331–343

    Google Scholar 

  • Xu X (2002) Phase explosion and its time lag in nanosecond laser ablation. Appl Surf Sci 197–198:61–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes T. van Elteren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Elteren, J.T., Panighello, S., Šelih, V.S., Orsega, E.F. (2016). Optimization of 2D LA-ICP-MS Mapping of Glass with Decorative Colored Features: Application to Analysis of a Polychrome Vessel Fragment from the Iron Age. In: Dussubieux, L., Golitko, M., Gratuze, B. (eds) Recent Advances in Laser Ablation ICP-MS for Archaeology. Natural Science in Archaeology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49894-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49894-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49892-7

  • Online ISBN: 978-3-662-49894-1

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics