Skip to main content

Open-Cell Ablation of Killke and Inka Pottery from the Cuzco Area: Museum Collections as Repositories of Provenience Information

  • Chapter
  • First Online:
Recent Advances in Laser Ablation ICP-MS for Archaeology

Part of the book series: Natural Science in Archaeology ((ARCHAEOLOGY))

  • 827 Accesses

Abstract

Museum collections are often invaluable repositories of information for archaeologists, as they contain large numbers of intact, well provenanced objects. However, the utility of such collections for chemical analysis is often limited by the inability to perform destructive analysis on them. We report here on the analysis of Killke (ad 1000–1400) and Inka (ad 1400–1532) ceramics from the Cuzco area of Peru housed in the Field Museum of Natural History South American collections using a specially modified open-cell laser to generate compositional data from complete intact vessels in a minimally destructive manner. These data are compared to measurements performed using a conventional laser cell on Killke and Inka sherds from the same collections and regional raw material samples. We discuss both the utility and shortcomings of the open-cell system as a means of ceramic analysis, as well as implications for archaeological understanding of prehistoric ceramic production and economy in the Cuzco area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander ML, Smith MR, Hartman JS, Mendoza A, Koppenaal DW (1998) Laser ablation inductively coupled plasma mass spectrometry. Appl Surf Sci 127–129:255–261

    Article  Google Scholar 

  • Arnold DE, Neff H, Glascock MD (2000) Testing assumptions of Neutron Activation Analysis: communities, workshops and paste preparation in Yucatán, Mexico. Archaeometry 42:301–316

    Article  Google Scholar 

  • Arrowsmith P, Hughes SK (1988) Entrainment and transport of laser ablated plumes for subsequent elemental analysis. Appl Spectrosc 42:1231–1239

    Article  Google Scholar 

  • Asogan D, Sharp BL, O’Connor CP, Green DA, Hutchinson RW (2009) An open, non-contact cell for laser ablation-inductively coupled plasma-mass spectrometry. J Anal Atom Spectrom 24:917–923

    Article  Google Scholar 

  • Bauer BS (1999) The early ceramics of the Inca Heartland, vol 31, Fieldiana Anthropology New Series. Field Museum of Natural History, Chicago, IL

    Book  Google Scholar 

  • Bauer BS (2004) Ancient Cuzco: heartland of the Inca. University of Texas Press, Austin, TX

    Google Scholar 

  • Bauer BS, Stanish C (1990) Killke and Killke-related pottery from Cuzco, Peru, in the Field Museum of Natural History, vol 15, Fieldiana Anthropology New Series. Field Museum of Natural History, Chicago, IL

    Book  Google Scholar 

  • Baxter MJ (1992) Archaeological uses of the biplot—a neglected technique? In: Lock G, Moffett J (eds) Computer applications and quantitative methods in archaeology. BAR International Series S577. Tempvs Reparatvm, Archaeological and Historical Associates, Oxford, pp 141–148

    Google Scholar 

  • Beck ME, Neff H (2007) Hohokam and Patayan interaction in southwestern Arizona: evidence from ceramic compositional analyses. J Archaeol Sci 34:289–300

    Article  Google Scholar 

  • Bertolino SR, Josa VG, Carreras AC, Laguens A, de la Fuente G, Riveros JA (2008) X-ray techniques applied to surface paintings of ceramic pottery pieces from Aguada Culture (Catamarca, Argentina). X-Ray Spectrom 38:95–102

    Article  Google Scholar 

  • Bleiner D, Bogaerts A (2007) Computer simulations of sample chambers for laser ablation-inductively coupled plasma spectrometry. Spectrochim Acta B 62:155–168

    Article  Google Scholar 

  • Bray TL, Minc LD, Constanza Ceruti M, Chávez JA, Perea R, Reinhard J (2005) A compositional analysis of pottery vessels associated with the Inca ritual of capacocha. J Anthropol Archaeol 24:82–100

    Article  Google Scholar 

  • Caillaux VC, Cárdenas Roque J, Carlier G (2011) Geología del Cuadrángulo de Cusco. Hoja 28-s Boletín no. 138 Serie A Carta Geológica Nacional Escala 1:50,000. INGEMMET, Lima

    Google Scholar 

  • Chen Z (1999) Inter-element fractionation and correction in laser ablation inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 14:1823–1828

    Article  Google Scholar 

  • Cogswell JW, Neff H, Glascock MD (1996) The effect of firing temperature on the elemental characterization of pottery. J Archaeol Sci 23:283–287

    Article  Google Scholar 

  • Devos W, Moor C, Lienemann P (1999) Determination of impurities in antique silver objects for authentication by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J Anal Atom Spectrom 14:621–626

    Article  Google Scholar 

  • Dinator MI, Morales JR (1990) Characterization of colour pigments in pre-Columbian Chilean potteries by PIXE elemental analysis. J Radioanal Nucl Chem 140:133–139

    Article  Google Scholar 

  • Dussubieux L, Golitko M, Williams PR, Speakman RJ (2007) LA-ICP-MS analysis applied to the characterization of Peruvian Wari ceramics. In: Glascock MD, Speakman RJ, Popelka-Filcoff RS (eds) Archaeological chemistry: analytical technique and archaeological interpretation. American Chemical Society, Washington, DC, pp 349–363

    Chapter  Google Scholar 

  • Eckert SL, James WD (2011) Investigating the production and distribution of plain ware pottery in the Samoan archipelago with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). J Archaeol Sci 38:2155–2170

    Article  Google Scholar 

  • Eggins SM, Kinsley LPJ, Shelley JMG (1998) Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surf Sci 127–129:278–286

    Article  Google Scholar 

  • Elliot S, Knowles M, Kalinitchenko I (2004) A new direction in ICP-MS. Spectroscopy 19:30–38

    Google Scholar 

  • Fitzpatrick SM, Takamiya H, Neff H, Dickinson WR (2006) Compositional analysis of Yayoi-Heian period ceramics from Okinawa: examining the potential for provenance study. Geoarchaeology 21:803–822

    Article  Google Scholar 

  • Forster N, Grave P, Vickery N, Kealhofer L (2011) Non-destructive analysis using PXRF: methodology and application to archaeological ceramics. X-Ray Spectrom 40:389–398

    Article  Google Scholar 

  • Frankel D, Webb JM (2012) Pottery production and distribution in prehistoric Bronze Age Cyprus. An application of pXRF analysis. J Archaeol Sci 39:1380–1387

    Article  Google Scholar 

  • Fryer BJ, Jackson SE, Longerich HP (1995) The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM-ICP-MS) in the earth sciences. Can Mineral 33:303–312

    Google Scholar 

  • Gaboardi M, Humayun M (2009) Elemental fractionation during LA-ICP-MS analysis of silicate glasses: implications for matrix-independent standardization. J Anal Atom Spectrom 24:1188–1197

    Article  Google Scholar 

  • Glascock MD (1992) Neutron activation analysis. In: Neff H (ed) Chemical characterization of ceramic pastes in archaeology. Prehistory Press, Madison, WI, pp 11–26

    Google Scholar 

  • Glascock MD, Neff H, Vaughn KJ (2004) Instrumental neutron activation analysis and multivariate statistics for pottery provenance. Hyperfine Interact 154:95–105

    Article  Google Scholar 

  • Glaus R, Koch J, Günther D (2012) A portable laser ablation sampling device for elemental fingerprinting of objects outside the laboratory with laser ablation inductively coupled plasma mass spectrometry. Anal Chem 84(12):5358–5364

    Article  Google Scholar 

  • Golitko M (2011) Provenience investigations of ceramic and obsidian samples using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and portable X-ray fluorescence (p-XRF). In: Terrell JE, Schechter EM (eds) Exploring prehistory on the Sepik Coast of Papua New Guinea, vol 42, Fieldiana Anthropology New Series. Field Museum of Natural History, Chicago, IL, pp 251–287

    Google Scholar 

  • Golitko M, Bosquet D (2011) Implications des Analyses de la Composition de la Céramique pour la transition Mesolithique-Neolithique dans L’Europe du Nord-Ouest. In: Hauzeur A, Jadin I, Jungels C (eds) 5000 ans avant J.-C.: la grande migration? Le Néolithique ancien dans la collection Louis Éloy, vol 3, Collections du Patrimoine culturel no. Édition du Service Patrimoine culturel de la Fédération Wallonie-Bruxelles, Brussels, pp 86–93

    Google Scholar 

  • Golitko M, Terrell JE (2012) Mapping prehistoric social fields on the Sepik coast of Papua New Guinea: ceramic compositional analysis using laser ablation-inductively coupled plasma-mass spectrometry. J Archaeol Sci 39:3568–3580

    Article  Google Scholar 

  • Gonzalez J, Mao XL, Roy J, Mao SS, Russo RE (2002) Comparison of 193, 213 and 266 nm laser ablation ICP-MS. J Anal Atom Spectrom 17:1108–1113

    Article  Google Scholar 

  • Goren Y, Mommsen H, Klinger J (2011) Non-destructive provenance study of cuneiform tablets using portable X-ray fluorescence. J Archaeol Sci 38:684–696

    Article  Google Scholar 

  • Gratuze B, Blet-Lemarquand M, Barrandon J-N (2001) Mass spectrometry with laser sampling: a new tool to characterize archaeological materials. J Radioanal Nucl Chem 247:645–656

    Article  Google Scholar 

  • Guillong M, Günther D (2002) Effect of particle size distribution on ICP-induced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry. J Anal Atom Spectrom 17: 831–837

    Article  Google Scholar 

  • Guillong M, Horn I, Günther D (2003) A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS. J Anal Atom Spectrom 18:1224–1230

    Article  Google Scholar 

  • Harbottle G (1976) Activation analysis in archaeology. In: Newton GWA (ed) Radiochemistry, vol 3. The Chemical Society, London, pp 33–72

    Chapter  Google Scholar 

  • Ixer RA, Lunt S (1991) Petrography of certain pre-Spanish pottery of Peru. In: Middleton A, Freestone I (eds) Recent developments in ceramic petrology. British Museum Occasional Paper no. 81, London, pp 137–164

    Google Scholar 

  • Jackson S (2001) The application of Nd:YAG lasers in LA-ICP-MS. In: Sylvester P (ed) Laser-ablation ICPMS in the earth sciences: principles and applications, vol 29, Short Course Series. Mineralogical Association of Canada, St. Johns, pp 29–46

    Google Scholar 

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 620-617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429

    Article  Google Scholar 

  • Joyce AA, Neff H, Thieme MS, Winter M, Elam JM, Workinger A (2006) Ceramic production and exchange in late/terminal formative period Oaxaca. Lat Am Antiq 17:579–594

    Article  Google Scholar 

  • Kilikoglou V, Maniatis Y, Grimanis AP (1988) The effect of purification and firing of clays on trace element provenance studies. Archaeometry 30:37–46

    Article  Google Scholar 

  • Košler J, Longerich HP, Tubrett MN (2002) Effect of oxygen on laser-induced elemental fractionation in LA-ICP-MS analysis. Anal Bioanal Chem 374:251–254

    Article  Google Scholar 

  • Kovacs R, Nishiguchi K, Utani K, Günther D (2010) Development of direct atmospheric sampling for laser ablation-inductively coupled plasma-mass spectrometry. J Anal Atom Spectrom 25:142–147

    Article  Google Scholar 

  • Kuleff I, Djingova R (1998) Mean concentrations of elements determined in Ohio Red Clay. J Radioanal Nucl Chem 237:3–6

    Article  Google Scholar 

  • Neff H (1994) R-Q mode principal components analysis of ceramic compositional data. Archaeometry 36:115–130

    Article  Google Scholar 

  • Neff H (2002) Quantitative techniques for analyzing ceramic compositional data. In: Glowacki DM, Neff H (eds) Ceramic production and circulation in the Greater Southwest: source determination by INAA and Complementary Mineralogical Investigations. Monograph 44. The Cotsen Institute of Archaeology, University of California, Los Angeles, CA

    Google Scholar 

  • Neff H, Bove FJ (1999) Mapping ceramic compositional variation and prehistoric interaction in Pacific Coastal Guatemala. J Archaeol Sci 26:1037–1051

    Article  Google Scholar 

  • Niziolek LC (2013) Earthenware production and distribution in the Prehispanic Philippine polity of Tanjay: results from laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). J Archaeol Sci 40:2824–2839

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MT, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM610 and SRM612 glass reference materials. Geostandard Newslett 21:114–115

    Article  Google Scholar 

  • Rice PM (1987) Pottery analysis: a sourcebook. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Schwedt A, Mommsen H (2007) On the influence of drying and firing of clay on the formation of trace element concentration profiles within pottery. Archaeometry 49:495–509

    Article  Google Scholar 

  • Sharratt N, Golitko M, Williams PR, Dussubieux L (2009) Ceramic production during the Middle Horizon: Wari and Tiwanaku clay procurement in the Moquegua Valley, Peru. Geoarchaeology 24:792–820

    Article  Google Scholar 

  • Speakman RJ, Neff H (2005) The application of laser ablation ICP-MS to the study of archaeological materials—an introduction. In: Speakman RJ, Neff H (eds) Laser ablation ICP-MS in archaeological research. University of New Mexico Press, Albuquerque, NM, pp 1–16

    Google Scholar 

  • Speakman RJ, Little NC, Creel D, Miller MR, Iñañez JG (2011) Sourcing ceramics with portable XRF spectrometers? A comparison with INAA using Mimbres pottery from the American Southwest. J Archaeol Sci 38:3483–3496

    Article  Google Scholar 

  • Stoner WD, Glascock MD (2012) The forest or the trees? Behavioral and methodological considerations for geochemical characterization of heavily-tempered ceramic pastes using NAA and LA-ICP-MS. J Archaeol Sci 39:2668–2683

    Article  Google Scholar 

  • Vaughn KJ, Neff H (2004) Tracing the clay source of Nasca polychrome pottery: results from a preliminary raw material survey. J Archaeol Sci 31:1577–1586

    Article  Google Scholar 

  • Vaughn KJ, Conlee CA, Neff H, Schreiber KJ (2005) A compositional analysis of Nasca pigments: implications for craft production on the pre-hispanic South Coast of Peru. In: Speakman RJ, Neff H (eds) Laser ablation ICP-MS in archaeological research. University of New Mexico Press, Albuquerque, NM, pp 139–153

    Google Scholar 

  • Vaughn KJ, Dussubieux L, Williams PR (2011) A pilot compositional analysis of Nasca ceramics from the Kroeber collection. J Archaeol Sci 38:3560–3567

    Article  Google Scholar 

  • Wagner B, Jędral W (2011) Open ablation cell for LA-ICP-MS investigations of historic objects. J Anal Atom Spectrom 26:2058–2206

    Article  Google Scholar 

Download references

Acknowledgments

The ICP-MS lab at the Field Museum Elemental Analysis Facility was constructed with funding from the National Science Foundation (BCS-0320903), the Museum’s Anthropology Alliance, and an anonymous donation. The open-cell laser used in this study (projects EAF047 and EAF049) was modified by Richard Cox (Université du Québec à Chicoutimi) and purchased with funding from the Grainger Foundation. Analysis was funded by NSF Archaeometry Grant BCS-0726651. Many thanks to Laure Dussubieux and Brian Bauer for their assistance, and to two anonymous reviewers for an abundance of useful comments on an earlier draft. All remaining errors are the sole responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Golitko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Golitko, M., Sharratt, N., Williams, P.R. (2016). Open-Cell Ablation of Killke and Inka Pottery from the Cuzco Area: Museum Collections as Repositories of Provenience Information. In: Dussubieux, L., Golitko, M., Gratuze, B. (eds) Recent Advances in Laser Ablation ICP-MS for Archaeology. Natural Science in Archaeology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49894-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49894-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49892-7

  • Online ISBN: 978-3-662-49894-1

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics