Skip to main content

Instrumentation, Fundamentals, and Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry

  • Chapter
  • First Online:
Recent Advances in Laser Ablation ICP-MS for Archaeology

Part of the book series: Natural Science in Archaeology ((ARCHAEOLOGY))

Abstract

Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is becoming a versatile and mature analytical technique for quantitative major, minor, and trace element analysis and isotope ratio determinations. A wide variety of solid and liquid samples can be analyzed. Besides the fast growing application of this method as an imaging technique, geology still is and has been the major driving force for the development of LA-ICP-MS. In this review, the method, instrumentation, fundamental observations and quantification procedures are explained. In addition, pros and cons of the technique are discussed and some trends and new sampling strategies, with special focus on archaeological applications, are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeschliman DB, Bajic SJ, Baldwin DP, Houk RS (2003) High-speed digital photographic study of an inductively coupled plasma during laser ablation: comparison of dried solution aerosols from a microconcentric nebulizer and solid particles from laser ablation. J Anal Atom Spectrom 18:1008–1014

    Article  Google Scholar 

  • Arnold DE, Bohor BF, Neff H, Feinman GM, Williams PR, Dussubieux L, Bishop R (2012) The first direct evidence of pre-columbian sources of palygorskite for Maya Blue. J Archaeol Sci 39:2252–2260

    Article  Google Scholar 

  • Arrowsmith P (1987) Laser ablation of solids for elemental analysis by inductively coupled plasma mass spectrometry. Anal Chem 59:1437–1444

    Article  Google Scholar 

  • Arrowsmith P, Hughes SK (1988) Entrainment and transport of laser ablated plumes for subsequent elemental analysis. Appl Specstroc 42:1231–1239

    Article  Google Scholar 

  • Asogan D, Sharp BL, Connor CJPO, Green DA, Hutchinson RW (2009) An open, non-contact cell for laser ablation-inductively coupled plasma-mass spectrometry. J Anal Atom Spectrom 24:917–923

    Article  Google Scholar 

  • Barca D, de Francesco AM, Mirocle Crisci G (2007) Application of Laser Ablation ICP-MS for characterization of obsidian fragments from peri-Tyrrhenian area. J Cult Herit 8:141–150

    Article  Google Scholar 

  • Becker JS, Zoriy MV, Pickhardt C, Palomero-Gallagher N, Zilles K (2005) Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 77:3208–3216

    Article  Google Scholar 

  • Becker JS, Dietrich RC, Matusch A, Pozebon D, Dressler VL (2008) Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry. Spectrochim Acta B 63:1248–1252

    Article  Google Scholar 

  • Bi M, Ruiz AM, Gornushkin I, Smith BW, Winefordner JD (2000) Profiling of patterned metal layers by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Appl Surf Sci 158:197–204

    Article  Google Scholar 

  • Bian QZ, Koch J, Lindner H, Berndt H, Hergenröder R, Niemax K (2005) Non-matrix matched calibration using near-IR femtosecond laser ablation inductively coupled plasma optical emission spectrometry. J Anal Atom Spectrom 20:736–740

    Article  Google Scholar 

  • Bian Q, Garcia CC, Koch J, Niemax K (2006) Non-matrix matched calibration of major and minor concentrations of Zn and Cu in brass, aluminium and silicate glass using NIR femtosecond laser ablation inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 21:187–191

    Article  Google Scholar 

  • Birbaum K (2011) Capabilities and limitations of inductively coupled plasma mass spectrometry-analyses on engineered and laser-generated nanoparticles. Ph.D. Dissertation, ETH Zurich

    Google Scholar 

  • Bleiner D, Altorfer H (2005) A novel gas inlet system for improved aerosol entrainment in laser ablation inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 20:754–756

    Article  Google Scholar 

  • Bleiner D, Günther D (2001) Theoretical description and experimental observation of aerosol transport processes in laser ablation inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 16:449–456

    Article  Google Scholar 

  • Borovinskaya O, Hattendorf B, Tanner M, Gschwind S, Günther D (2013) A prototype of a new inductively coupled plasma time-of-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. J Anal Atom Spectrom 28:226–233

    Article  Google Scholar 

  • Campbell AJ, Humayun M (1999) Trace element microanalysis in iron meteorites by laser ablation ICPMS. Anal Chem 71:939–946

    Article  Google Scholar 

  • Carr JW, Horlick G (1982) Laser vaporization of solid metal samples into an inductively coupled plasma. Spectrochim Acta B 37:1–15

    Article  Google Scholar 

  • Chen Z (1999) Inter-element fractionation and correction in laser ablation inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 14:1823–1828

    Article  Google Scholar 

  • Cottle JM, Horstwood MSA, Parrish RR (2009) A new approach to single shot laser ablation analysis and its application to in situ Pb/U geochronology. J Anal Atom Spectrom 24:1355–1363

    Article  Google Scholar 

  • Cromwell EF, Arrowsmith P (1996) Novel multichannel plasma-source mass spectrometer. J Am Soc Mass Spectrom 7:458–466

    Article  Google Scholar 

  • Devos W, Moor C, Lienemann P (1999) Determination of impurities in antique silver objects for authentication by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). J Anal Atom Spectrom 14:621–626

    Article  Google Scholar 

  • Dorta L, Kovacs R, Koch J, Nishiguchi K, Utani K, Günther D (2013) Determining isotope ratios using laser ablation sampling in air with MC-ICPMS. J Anal Atom Spectrom 28:1513–1521

    Article  Google Scholar 

  • Durrant SF (1999) Laser ablation inductively coupled plasma mass spectrometry: achievements, problems, prospects. J Anal Atom Spectrom 14:1385–1403

    Article  Google Scholar 

  • Dussubieux L, Golitko M, Williams PR, Speakman RJ (2007) LA-ICP-MS analysis applied to the characterization of Peruvian Wari ceramics. In: Glascock MD, Speakman RJ, Popelka-Filcoff RS (eds) Archaeological chemistry: analytical technique and archaeological interpretation. American Chemical Society, Washington, DC, pp 349–363

    Chapter  Google Scholar 

  • Dussubieux L, Deraisme A, Frot G, Stevenson C, Creech A, Bienvenu Y (2008) LA-ICP-MS, SEM-EDS and EPMA analysis of eastern north american copper-based artefacts: impact of corrosion and heterogeneity on the reliability of the LA-ICP-MS compositional results. Archaeometry 50:643–657

    Article  Google Scholar 

  • Eggins SM, Shelley JMG (2002) Compositional heterogeneity in NIST SRM 610-617 glasses. Geostandard Newslett 26:269–286

    Article  Google Scholar 

  • Eggins SM, Kinsley LPJ, Shelley JMG (1998) Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surf Sci 127–129:278–286

    Article  Google Scholar 

  • Feldmann J, Kindness A, Ek P (2002) Laser ablation of soft tissue using a cryogenically cooled ablation cell. J Anal Atom Spectrom 17:813–818

    Article  Google Scholar 

  • Felton JA, Schilling GD, Ray SJ, Sperline RP, Denton MB, Barinaga CJ, Koppenaal DW, Hieftje GM (2011) Evaluation of a fourth-generation focal plane camera for use in plasma-source mass spectrometry. J Anal Atom Spectrom 26:300–304

    Article  Google Scholar 

  • Figg DJ, Cross JB, Brink C (1998) More investigations into elemental fractionation resulting from laser ablation–inductively coupled plasma–mass spectrometry on glass samples. Appl Surf Sci 127–129:287–291

    Article  Google Scholar 

  • Fontaine G, Hametner K, Peretti A, Günther D (2010) Authenticity and provenance studies of copper-bearing andesines using Cu isotope ratios and element analysis by fs-LA-MC-ICPMS and ns-LA-ICPMS. Anal Bioanal Chem 398(7–8):2915–2928

    Article  Google Scholar 

  • Frick DA, Günther D (2012) Fundamental studies on the ablation behaviour of carbon in LA-ICPMS with respect to the suitability as internal standard. J Anal Atom Spectrom 27:1294–1303

    Article  Google Scholar 

  • Fricker MB (2012) Design of ablation cells for LA-ICPMS: from modeling to high spatial resolution analysis applications. Ph.D. Dissertation, ETH Zurich

    Google Scholar 

  • Fryer BJ, Jackson SE, Longerich HP (1995) The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma; mass spectrometer (LAM-ICPMS) in the earth sciences. Can Mineral 33:303–312

    Google Scholar 

  • Garcia CC, Lindner H, Niemax K (2007) Transport efficiency in femtosecond laser ablation inductively coupled plasma mass spectrometry applying ablation cells with short and long washout times. Spectrochim Acta B 62:13–19

    Article  Google Scholar 

  • Garcia CC, Wälle M, Lindner H, Koch J, Niemax K, Günther D (2008) Femtosecond laser ablation inductively coupled plasma mass spectrometry: transport efficiencies of aerosols released under argon atmosphere and the importance of the focus position. Spectrochim Acta B 63:271–276

    Article  Google Scholar 

  • Geertsen C, Briand A, Chartier F, Lacour J-L, Mauchien P, Sjöström S, Mermet J-M (1994) Comparison between infrared and ultraviolet laser ablation at atmospheric pressure—implications for solid sampling inductively coupled plasma spectrometry. J Anal Atom Spectrom 9:17–22

    Article  Google Scholar 

  • Glaus R, Kaegi R, Krumeich F, Günther D (2010) Phenomenological studies on structure and elemental composition of nanosecond and femtosecond laser-generated aerosols with implications on laser ablation inductively coupled plasma mass spectrometry. Spectrochim Acta B 65:812–822

    Article  Google Scholar 

  • Glaus R, Koch J, Günther D (2012) A portable laser ablation sampling device for elemental fingerprinting of objects outside the laboratory with laser ablation inductively coupled plasma mass spectrometry. Anal Chem 84:5358–5364

    Article  Google Scholar 

  • Glaus R, Dorta L, Zhang Z, Ma Q, Berke H, Günther D (2013) Isotope ratio determination of objects in the field by portable laser ablation sampling and subsequent multicollector ICPMS. J Anal Atom Spectrom 28:801–809

    Article  Google Scholar 

  • Gonzalez J, Oropeza DD, Mao X, Longerich HP, Russo RE (2012) Rapid bulk analysis using femtosecond laser ablation inductively coupled plasma Time-of-Flight mass spectrometry. J Anal Atom Spectrom 27:1405–1412

    Article  Google Scholar 

  • Gratuze B (1999) Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: sources and distribution of Obsidian within the Aegean and Anatolia. J Archaeol Sci 26:869–881

    Article  Google Scholar 

  • Gray AL (1985) Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst 110:551–556

    Article  Google Scholar 

  • Guilhaus M (2000) Essential elements of time-of-flight mass spectrometry in combination with the inductively coupled plasma ion source. Spectrochim Acta B 55:1511–1525

    Article  Google Scholar 

  • Guillong M, Günther D (2002) Effect of particle size distribution on ICP-induced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry. J Anal Atom Spectrom 17:831–837

    Article  Google Scholar 

  • Guillong M, Heinrich CA (2007) Sensitivity enhancement in laser ablation ICP-MS using small amounts of hydrogen in the carrier gas. J Anal Atom Spectrom 22:1488–1494

    Article  Google Scholar 

  • Guillong M, Horn I, Günther D (2003) A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS. J Anal Atom Spectrom 18:1224–1230

    Article  Google Scholar 

  • Günther D, Gäckle M (1988) Laser-Mikro-ICP-Spektrometrie – Integrale Messungen an verschiedenen Matrizes. Z Chem 28:227–228

    Article  Google Scholar 

  • Günther D, Heinrich CA (1999) Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier. J Anal Atom Spectrom 14:1363–1368

    Article  Google Scholar 

  • Günther D, Frischknecht R, Heinrich CA, Kahlert HJ (1997) Capabilities of an argon fluoride 193 nm excimer laser for laser ablation inductively coupled plasma mass spectrometry microanalysis of geological materials. J Anal Atom Spectrom 12:939–944

    Article  Google Scholar 

  • Günther D, Audétat A, Frischknecht R, Heinrich CA (1998) Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation–inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 13:263–270

    Article  Google Scholar 

  • Günther D, Jackson SE, Longerich HP (1999) Laser ablation and arc/spark solid sample introduction into inductively coupled plasma mass spectrometers. Spectrochim Acta B 54:381–409

    Article  Google Scholar 

  • Gurevich EL, Hergenröder R (2007) A simple laser ICPMS ablation cell with wash-out time less than 100 ms. J Anal Atom Spectrom 22:1043–1050

    Article  Google Scholar 

  • Halliday AN, Lee D-C, Christensen JN, Rehkämper M, Yi W, Luo X, Hall CM, Ballentine CJ, Pettke T, Stirling C (1998) Applications of multiple collector-ICPMS to cosmochemistry, geochemistry, and paleoceanography. Geochim Cosmochim Acta 62:919–940

    Article  Google Scholar 

  • Hattendorf B, Günther D (2001) Experimental evidence for the formation of doubly charged polyatomic ions in inductively coupled plasma mass spectrometry. Fresenius J Anal Chem 370(5):483–487

    Article  Google Scholar 

  • Hattendorf B, Latkoczy C, Günther D (2003) Laser ablation-ICPMS. Anal Chem 75:341A–347A

    Article  Google Scholar 

  • Heinrich CA, Pettke T, Halter W, Aigner M, Audetat A, Günther D, Hattendorf B, Bleiner D, Guillong M, Horn I (2003) Quantitative multi-element analysis of minerals, fluid and melt inclusions by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Geochim Cosmochim Acta 67:3473–3497

    Article  Google Scholar 

  • Horn I, von Blanckenburg F, Schoenberg R, Steinhoefel G, Markl G (2006) In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes. Geochim Cosmochim Acta 70:3677–3688

    Article  Google Scholar 

  • Horstwood MSA, Foster GL, Parrish RR, Noble SR, Nowell GM (2003) Common-Pb corrected in situ U–Pb accessory mineral geochronology by LA-MC-ICPMS. J Anal Atom Spectrom 18:837–846

    Article  Google Scholar 

  • Houk RS, Fassel VA, Flesch GD, Svec HJ, Gray AL, Taylor CE (1980) Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements. Anal Chem 52:2283–2289

    Article  Google Scholar 

  • Ishizuka T, Uwamino Y (1983) Inductively coupled plasma emission spectrometry of solid samples by laser ablation. Spectrochim Acta B 38:519–527

    Article  Google Scholar 

  • Jackson SE, Günther D (2003) The nature and sources of laser induced isotopic fractionation in laser ablation-multicollector-inductively coupled plasma-mass spectrometry. J Anal Atom Spectrom 18:205–212

    Article  Google Scholar 

  • Jackson SE, Longerich HP, Dunning GR, Fryer BJ (1992) The application of laser-ablation microprobe; inductively coupled plasma-mass spectrometry (LAM-ICPMS) to in situ trace-element determinations in minerals. Can Mineral 30:1049–1064

    Google Scholar 

  • Jeffries TE, Perkins WT, Pearce NJG (1995) Comparisons of infrared and ultraviolet laser probe microanalysis inductively coupled plasma mass spectrometry in mineral analysis. Analyst 120:1365–1371

    Article  Google Scholar 

  • Jeffries TE, Jackson SE, Longerich HP (1998) Application of a frequency quintupled Nd:YAG source (lambda = 213 nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals. J Anal Atom Spectrom 13:935–940

    Article  Google Scholar 

  • Jenner GA, Longerich HP, Jackson SE, Fryer BJ (1990) ICPMS-A powerful tool for high-precision trace-element analysis in Earth sciences: evidence from analysis of selected U.S.G.S. reference samples. Chem Geol 83:133–148

    Article  Google Scholar 

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429

    Article  Google Scholar 

  • Koch J, Günther D (2011) Review of the state-of-the-art of laser ablation inductively coupled plasma mass spectrometry. Appl Spectrosc 65:155A–162A

    Article  Google Scholar 

  • Koch J, von Bohlen A, Hergenröder R, Niemax K (2004) Particle size distributions and compositions of aerosols produced by near-IR-femto- and nanosecond laser ablation of brass. J Anal Atom Spectrom 19:267–272

    Article  Google Scholar 

  • Koch J, Schlamp S, Rösgen T, Fliegel D, Günther D (2007) Visualization of aerosol particles generated by near infrared nano- and femtosecond laser ablation. Spectrochim Acta B 62:20–29

    Article  Google Scholar 

  • Koch J, Wälle M, Dietiker R, Günther D (2008a) Analysis of laser-produced aerosols by inductively coupled plasma mass spectrometry: transport phenomena and elemental fractionation. Anal Chem 80:915–921

    Article  Google Scholar 

  • Koch J, Wälle M, Schlamp S, Rösgen T, Günther D (2008b) Expansion phenomena of aerosols generated by laser ablation under helium and argon atmosphere. Spectrochim Acta B 63:37–41

    Article  Google Scholar 

  • Koch J, Heiroth S, Lippert T, Günther D (2010) Femtosecond laser ablation: visualization of the aerosol formation process by light scattering and shadow graphic imaging. Spectrochim Acta B 65:943–949

    Article  Google Scholar 

  • Košler J, Wiedenbeck M, Wirth R, Hovorka J, Sylvester P, Míková J (2005) Chemical and phase composition of particles produced by laser ablation of silicate glass and zircon—implications for elemental fractionation during ICPMS analysis. J Anal Atom Spectrom 20:402–409

    Article  Google Scholar 

  • Kovacs R, Günther D (2008) Influence of transport tube materials on signal response and drift in laser ablation-inductively coupled plasma-mass spectrometry. J Anal Atom Spectrom 23:1247–1252

    Article  Google Scholar 

  • Kovacs R, Nishiguchi K, Utani K, Günther D (2010) Development of direct atmospheric sampling for laser ablation-inductively coupled plasma-mass spectrometry. J Anal Atom Spectrom 25:142–147

    Article  Google Scholar 

  • Kroslakova I, Günther D (2007) Elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry: evidence for mass load induced matrix effects in the ICP during ablation of a silicate glass. J Anal Atom Spectrom 22:51–62

    Article  Google Scholar 

  • Kuhn H-R, Günther D (2003) Elemental fractionation studies in laser ablation inductively coupled plasma mass spectrometry on laser-induced brass aerosols. Anal Chem 75:747–753

    Article  Google Scholar 

  • Liu Y, Hu Z, Yuan H, Hu S, Cheng H (2007) Volume-optional and low-memory (VOLM) chamber for laser ablation-ICPMS: application to fiber analyses. J Anal Atom Spectrom 22:582–585

    Article  Google Scholar 

  • Longerich HP (2012) Inductively coupled plasma-mass spectrometry (ICPMS): a personal Odyssey III. J Anal Atom Spectrom 27:1181–1184

    Article  Google Scholar 

  • Longerich HP, Günther D, Jackson SE (1996a) Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. Anal Bioanal Chem 355:538–542

    Article  Google Scholar 

  • Longerich HP, Jackson SE, Günther D (1996b) Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal Atom Spectrom 11:899–904

    Article  Google Scholar 

  • Mahoney PP, Li G, Hieftje GM (1996) Laser ablation inductively coupled plasma mass spectrometry with a time-of-flight mass analyser. J Anal Atom Spectrom 11:401–405

    Article  Google Scholar 

  • Mank AJG, Mason PRD (1999) A critical assessment of laser ablation ICPMS as an analytical tool for depth analysis in silica-based glass samples. J Anal Atom Spectrom 14:1143–1153

    Article  Google Scholar 

  • Margetic V, Pakulev A, Stockhaus A, Bolshov M, Niemax K, Hergenröder R (2000) A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples. Spectrochim Acta B 55:1771–1785

    Article  Google Scholar 

  • Mattauch J, Herzog R (1934) About a new mass spectrograph. Z Phys 89:786–795

    Article  Google Scholar 

  • Mattey D, Lowry D, Duffet J, Fisher R, Hodge E, Frisia S (2008) A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation. Earth Planet Sci Lett 269:80–95

    Article  Google Scholar 

  • Monticelli D, Gurevich EL, Hergenroder R (2009) Design and performances of a cyclonic flux cell for laser ablation. J Anal Atom Spectrom 24:328–335

    Article  Google Scholar 

  • Mozna V, Pisonero J, Hola M, Kanicky V, Günther D (2006) Quantitative analysis of Fe-based samples using ultraviolet nanosecond and femtosecond laser ablation-ICP-MS. J Anal Atom Spectrom 21:1194–1201

    Article  Google Scholar 

  • Müller W, Shelley M, Miller P, Broude S (2009) Initial performance metrics of a new custom-designed ArF excimer LA-ICP-MS system coupled to a two-volume laser-ablation cell. J Anal Atom Spectrom 24:209–214

    Article  Google Scholar 

  • Müller W, Shelley JMG, Rasmussen SO (2011) Direct chemical analysis of frozen ice cores by UV-laser ablation ICPMS. J Anal Atom Spectrom 26:2391–2395

    Article  Google Scholar 

  • Myers DP, Hieftje GM (1993) Preliminary design considerations and characteristics of an inductively coupled plasma-time-of-flight mass spectrometer. Microchem J 48:259–277

    Article  Google Scholar 

  • Outridge PM, Doherty W, Gregoire DC (1996) The formation of trace element-enriched particulates during laser ablation of refractory materials. Spectrochim Acta B 51:1451–1462

    Article  Google Scholar 

  • Pettke T, Oberli F, Audétat A, Guillong M, Simon AC, Hanley JJ, Klemm LM (2012) Recent developments in element concentration and isotope ratio analysis of individual fluid inclusion by laser ablation single and multiple collector ICPMS. Ore Geol Rev 44:10–38

    Article  Google Scholar 

  • Pisonero J, Fliegel D, Gunther D (2006) High efficiency aerosol dispersion cell for laser ablation-ICPMS. J Anal Atom Spectrom 21:922–931

    Article  Google Scholar 

  • Pisonero J, Koch J, Wälle M, Hartung W, Spencer ND, Günther D (2007) Capabilities of femtosecond laser ablation inductively coupled plasma mass spectrometry for depth profiling of thin metal coatings. Anal Chem 79:2325–2333

    Article  Google Scholar 

  • Plotnikov A, Vogt C, Hoffmann V, Taschner C, Wetzig K (2001) Application of laser ablation inductively coupled plasma quadrupole mass spectrometry (LA-ICP-QMS) for depth profile analysis. J Anal Atom Spectrom 16:1290–1295

    Article  Google Scholar 

  • Plotnikov A, Vogt C, Wetzig K, Kyriakopoulos A (2008) A theoretical approach to the interpretation of the transient data in scanning laser ablation inductively coupled plasma mass spectrometry: consideration of the geometry of the scanning area. Spectrochim Acta B 63:474–483

    Article  Google Scholar 

  • Raab A, Ploselli B, Munro C, Thomas-Oates J, Feldmann J (2009) Evaluation of gel electrophoresis conditions for the separation of metal-tagged proteins with subsequent laser ablation ICP-MS detection. Electrophoresis 30:303–314

    Article  Google Scholar 

  • Reinhardt H, Kriews M, Miller H, Schrems O, Lüdke C, Hoffmann E, Skole J (2001) Laser ablation inductively coupled plasma mass spectrometry: a new tool for trace element analysis in ice cores. Fresen J Anal Chem 370:629–636

    Article  Google Scholar 

  • Reinhardt H, Kriews M, Miller H, Lüdke C, Hoffmann E, Skole J (2003) Application of LA-ICP-MS in polar ice core studies. Anal Bioanal Chem 375:1265–1275

    Google Scholar 

  • Resano M, McIntosh KS, Vanhaecke F (2012) Laser ablation-inductively coupled plasma-mass spectrometry using a double-focusing sector field mass spectrometer of Mattauch–Herzog geometry and an array detector for the determination of platinum group metals and gold in NiS buttons obtained by fire assay of platiniferous ores. J Anal Atom Spectrom 27:165–173

    Article  Google Scholar 

  • Russo RE, Mao XL, Borisov OV, Liu H (2000) Influence of wavelength on fractionation in laser ablation ICP-MS. J Anal Atom Spectrom 15:1115–1120

    Article  Google Scholar 

  • Russo RE, Mao X, Gonzalez JJ, Mao SS (2002a) Femtosecond laser ablation ICP-MS. J Anal Atom Spectrom 7:1072–1075

    Article  Google Scholar 

  • Russo RE, Mao X, Liu H, Gonzalez J, Mao SS (2002b) Laser ablation in analytical chemistry-a review. Talanta 57:425–451

    Article  Google Scholar 

  • Schilling GD, Ray SJ, Rubinshtein AA, Felton JA, Sperline RP, Denton MB, Barinaga CJ, Koppenaal DW, Hieftje GM (2009) Evaluation of a 512-channel Faraday-strip array detector coupled to an inductively coupled plasma Mattauch−Herzog mass spectrograph. Anal Chem 81:5467–5473

    Article  Google Scholar 

  • Schrön W, Bombach G, Beuge P (1983) Schnellverfahren zur flammenlosen AAS-Bestimmung von Spurenelementen in geologischen Proben. Spectrochim Acta B 38:1269–1276

    Article  Google Scholar 

  • Shuttleworth S (1996) Optimisation of laser wavelength in the ablation sampling of glass materials. Appl Surf Sci 96–98:513–517

    Article  Google Scholar 

  • Sinclair DJ, Kinsley LPJ, McCulloch MT (1998) High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta 62:1889–1901

    Article  Google Scholar 

  • Tabersky D, Nishiguchi K, Utani K, Ohata M, Dietiker R, Fricker MB, de Maddalena IM, Koch J, Günther D (2013) Aerosol entrainment and a large-capacity gas exchange device (Q-GED) for laser ablation inductively coupled plasma mass spectrometry in atmospheric pressure air. J Anal Atom Spectrom 28:831–842

    Article  Google Scholar 

  • Tanner M (2007) Fundamental studies on fast signal generation without an aerosol transport system for Laser Ablation Inductively Coupled Plasma Mass Spectrometry, Ph.D. Dissertation, ETH Zurich

    Google Scholar 

  • Tanner M, Günther D (2005) In torch laser ablation sampling for inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 20:987–989

    Article  Google Scholar 

  • Tanner M, Günther D (2006) In torch laser ablation sampling for inductively coupled plasma time of flight mass spectrometry. J Anal Atom Spectrom 21:941–947

    Article  Google Scholar 

  • Thompson M, Goulter JE, Sieper F (1981) Laser ablation for the introduction of solid samples into an inductively coupled plasma for atomic-emission spectrometry. Analyst 106:32–39

    Article  Google Scholar 

  • Treble P, Shelley JMG, Chappell J (2003) Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia. Earth Planet Sci Lett 216:141–153

    Article  Google Scholar 

  • Treble PC, Chappell J, Shelley JMG (2005) Complex speleothem growth processes revealed by trace element mapping and scanning electron microscopy of annual layers. Geochim Cosmochim Acta 69:4855–4863

    Article  Google Scholar 

  • Vaughn KJ, Dussubieux L, Williams RR (2011) A pilot compositional analysis of Nasca ceramics from the Kroeber collection. J Archaeol Sci 38:3560–3567

    Article  Google Scholar 

  • Wagner B, Jędral W (2011) Open ablation cell for LA-ICP-MS investigations of historic objects. J Anal Atom Spectrom 26:2058–2063

    Article  Google Scholar 

  • Wälle M, Koch J, Flamigni L, Heirot S, Lippert T, Hartung W, Günther D (2009) Detection efficiencies in nano- and femtosecond laser ablation inductively coupled plasma mass spectrometry. Spectrochim Acta B 64:109–112

    Article  Google Scholar 

  • Wang HAO, Grolimund D, Giesen C, Borca CN, Shaw-Stewart JRH, Bodenmiller B, Günther D (2013) Fast chemical imaging at high spatial resolution by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 85:10107–10116

    Article  Google Scholar 

  • Wiltsche H, Günther D (2010) Capabilities of femtosecond laser ablation ICP-MS for the major, minor and trace element analysis of high alloyed steels and super alloys. Anal Bioanal Chem 399:2167–2174

    Article  Google Scholar 

  • Wirth J, Poletti S, Aeschlimann B, Yakandawala N, Drosse B, Osorio S, Tohge T, Fernie AR, Günther D, Gruissem W, Sautter C (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7:631–644

    Article  Google Scholar 

  • Woodhead JD, Hellstrom J, Hergt JM, Greig A, Maas R (2007) Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry. Geostand Geoanalyt Res 31:331–343

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Henry Longerich for fruitful discussion and comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Günther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fricker, M.B., Günther, D. (2016). Instrumentation, Fundamentals, and Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. In: Dussubieux, L., Golitko, M., Gratuze, B. (eds) Recent Advances in Laser Ablation ICP-MS for Archaeology. Natural Science in Archaeology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49894-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49894-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49892-7

  • Online ISBN: 978-3-662-49894-1

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics