Skip to main content

The Genus Dehalobacter

  • Chapter
  • First Online:
Organohalide-Respiring Bacteria

Abstract

The genus Dehalobacter embraces bacterial populations that seem to exclusively degrade organohalides. All isolates in pure culture and highly enriched strains are obligate organohalide-respiring bacteria that use hydrogen as energy and electron source, acetate as carbon source, and an organohalide as terminal electron acceptor. Depending on the strain, they are restricted to the use of only one or two organohalides from the same chemical group (i.e. aliphatic or aromatic organohalides), a few strains however can use several compounds and from different groups. Organohalides used by Dehalobacter are chlorinated methanes, ethanes, ethenes, cyclohexanes, benzenes, phenols and phthalides. However, two enrichments dominated by Dehalobacter spp. indicate another metabolic pathway with a specific organohalide, namely fermentation of dichloromethane. No particular habitat can be defined for this bacterial genus since the different strains have been enriched and isolated from various matrices such as sediments, aquifers and anaerobic sludge from waste treatment processes. The small motile rods (0.5 μm in diameter, 2–3 μm long) usually stain Gram-negative, contain, however, peptidoglycan features of Gram-positives, menaquinones, and cytochrome b, and are surrounded by proteinaceous S-layer. Phylogenetically Dehalobacter is affiliated to low GC Gram-positive Firmicutes. Recently available genome sequences revealed that Dehalobacter spp. harbour an unexpected large number of putative reductive dehalogenase genes (10-27 paralogs) showing a relatively high diversity, several hydrogenases of different types, an 11-subunit respiration complex I, all necessary genes for the Wood-Ljungdahl pathway and the biosynthesis pathway of corrinoids, and seemed to confirm that Dehalobacter spp. cannot carry out any other respiration process than organohalide respiration. Hence, the hydrogen and carbon metabolisms seem to be more complex than anticipated, and also the observed restriction to few organohalides as electron acceptor is perhaps not reflecting the real dechlorination capabilities of Dehalobacter strains with the numerous putative reductive dehalogenase genes in their genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Choudhary PK, Duret A, Rohrbach-Brandt E, Holliger C, Sigel RKO, Maillard J (2013) Diversity of cobalamin riboswitches in the corrinoid-producing organohalide respirer Desulfitobacterium hafniense. J Bacteriol 195(22):5186–5195. doi:10.1128/jb.00730-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damgaard I, Bjerg PL, Baelum J, Scheutz C, Hunkeler D, Jacobsen CS, Tuxen N, Broholm MM (2013) Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis. J Contam Hydrol 146:37–50. doi:10.1016/j.jconhyd.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  • De Bruin WP, Kotterman MJJ, Posthumus MA, Schraa G, Zehnder AJB (1992) Complete biological reductive transformation of tetrachloroethene to ethane. Appl Environ Microbiol 58(6):1996–2000

    PubMed  PubMed Central  Google Scholar 

  • Deshpande NP, Wong YK, Manefield M, Wilkins MR, Lee M (2013) Genome sequence of Dehalobacter UNSWDHB, a chloroform-dechlorinating bacterium. Genome Announc 1 (5). doi:10.1128/genomeA.00720-13

  • Duret A, Holliger C, Maillard J (2012) The physiological opportunism of Desulfitobacterium hafniense strain TCE1 towards organohalide respiration with tetrachloroethene. Appl Environ Microbiol 78(17):6121–6127. doi:10.1128/aem.01221-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin BM, Tiedje JM, Loffler FE (2004) Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately trans-1,2-dichloroethene. Environ Sci Technol 38(16):4300–4303. doi:10.1021/es035439g

    Article  CAS  PubMed  Google Scholar 

  • Grostern A, Duhamel M, Dworatzek S, Edwards EA (2010) Chloroform respiration to dichloromethane by a Dehalobacter population. Environ Microbiol 12(4):1053–1060. doi:10.1111/j.1462-2920.2009.02150.x

    Article  CAS  PubMed  Google Scholar 

  • Grostern A, Edwards EA (2006) A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Appl Environ Microbiol 72(12):7849–7856. doi:10.1128/aem.01269-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grostern A, Edwards EA (2009) Characterization of a Dehalobacter coculture that dechlorinates 1,2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene. Appl Environ Microbiol 75(9):2684–2693. doi:10.1128/aem.02037-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grostern A, Chan WW, Edwards EA (2009) 1,1,1-trichloroethane and 1,1-dichloroethane reductive dechlorination kinetics and co-contaminant effects in a Dehalobacter-containing mixed culture. Environ Sci Technol 43(17):6799–6807

    Google Scholar 

  • Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJ (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169(4):313–321

    Article  CAS  PubMed  Google Scholar 

  • Holliger C, Schraa G, Stams AJM, Zehnder AJB (1993) A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 59(9):2991–2997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hug LA, Maphosa F, Leys D, Loffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 368(1616):20120322. doi:10.1098/rstb.2012.0322

    Article  PubMed  PubMed Central  Google Scholar 

  • Justicia-Leon SD, Ritalahti KM, Mack EE, Loffler FE (2012) Dichloromethane fermentation by a Dehalobacter sp. in an enrichment culture derived from pristine river sediment. Appl Environ Microbiol 78(4):1288–1291. doi:10.1128/aem.07325-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Harzman C, Davis JK, Hutcheson R, Broderick JB, Marsh TL, Tiedje JM (2012) Genome sequence of Desulfitobacterium hafniense DCB-2, a gram-positive anaerobe capable of dehalogenation and metal reduction. BMC Microbiol 12(1):21 1471-2180-12-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreher S, Schilhabel A, Diekert G (2008) Enzymes involved in the anoxic utilization of phenyl methyl ethers by Desulfitobacterium hafniense DCB2 and Desulfitobacterium hafniense PCE-S. Arch Microbiol 190(4):489–495. doi:10.1007/s00203-008-0400-8

    Article  CAS  PubMed  Google Scholar 

  • Kruse T, Maillard J, Goodwin L, Woyke T, Teshima H, Bruce D, Detter C, Tapia R, Han C, Huntemann M, Wei CL, Han J, Chen A, Kyrpides N, Szeto E, Markowitz V, Ivanova N, Pagani I, Pati A, Pitluck S, Nolan M, Holliger C, Smidt H (2013) Complete genome sequence of Dehalobacter restrictus PER-K23(T.). Stand Genomic Sci 8 (3):375–388. doi:10.4056/sigs.3787426

    Google Scholar 

  • Lacroix E, Brovelli A, Barry DA, Holliger C (2014) Use of silicate minerals for pH control during reductive dechlorination of chloroethenes in batch cultures of different microbial consortia. Appl Environ Microbiol 80(13):3858–3867. doi:10.1128/aem.00493-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee M, Low A, Zemb O, Koenig J, Michaelsen A, Manefield M (2012) Complete chloroform dechlorination by organochlorine respiration and fermentation. Environ Microbiol 14(4):883–894. doi:10.1111/j.1462-2920.2011.02656.x

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Inoue Y, Suzuki D, Ye L, Katayama A (2013a) Long-term anaerobic mineralization of pentachlorophenol in a continuous-flow system using only lactate as an external nutrient. Environ Sci Technol 47(3):1534–1541. doi:10.1021/es303784f

    CAS  PubMed  Google Scholar 

  • Li Z, Suzuki D, Zhang C, Yoshida N, Yang S, Katayama A (2013b) Involvement of Dehalobacter strains in the anaerobic dechlorination of 2,4,6-trichlorophenol. J Biosci Bioeng 116(5):602–609. doi:10.1016/j.jbiosc.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  • Lima G, Parker B, Meyer J (2012) Dechlorinating microorganisms in a sedimentary rock matrix contaminated with a mixture of VOCs. Environ Sci Technol 46(11):5756–5763. doi:10.1021/es300214f

    Article  CAS  PubMed  Google Scholar 

  • Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Muller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63 (Pt 2):625–635. doi:10.1099/ijs.0.034926-0

    Google Scholar 

  • Lowe M, Madsen EL, Schindler K, Smith C, Emrich S, Robb F, Halden RU (2002) Geochemistry and microbial diversity of a trichloroethene-contaminated Superfund site undergoing intrinsic in situ reductive dechlorination. FEMS Microbiol Ecol 40(2):123–134. doi:10.1111/j.1574-6941.2002.tb00944.x

    Article  CAS  PubMed  Google Scholar 

  • Maillard J, Genevaux P, Holliger C (2011) Redundancy and specificity of multiple trigger factor chaperones in Desulfitobacteria. Microbiology 157(8):2410–2421. doi:10.1099/mic.0.050880-0

    Article  CAS  PubMed  Google Scholar 

  • Maillard J, Regeard C, Holliger C (2005) Isolation and characterization of Tn-Dha1, a transposon containing the tetrachloroethene reductive dehalogenase of Desulfitobacterium hafniense strain TCE1. Environ Microbiol 7(1):107–117. doi:10.1111/j.1462-2920.2004.00671.x

    Article  CAS  PubMed  Google Scholar 

  • Maillard J, Schumacher W, Vazquez F, Regeard C, Hagen WR, Holliger C (2003) Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl Environ Microbiol 69(8):4628–4638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maphosa F, van Passel MW, de Vos WM, Smidt H (2012) Metagenome analysis reveals yet unexplored reductive dechlorinating potential of Dehalobacter sp. E1 growing in co-culture with Sedimentibacter sp. Environ Microbiol Rep 4(6):604–616. doi:10.1111/j.1758-2229.2012.00376.x

  • Marzorati M, de Ferra F, Van Raemdonck H, Borin S, Allifranchini E, Carpani G, Serbolisca L, Verstraete W, Boon N, Daffonchio D (2007) A novel reductive dehalogenase, identified in a contaminated groundwater enrichment culture and in Desulfitobacterium dichloroeliminans strain DCA1, is linked to dehalogenation of 1,2-dichloroethane. Appl Environ Microbiol 73(9):2990–2999. doi:10.1128/aem.02748-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moparthi V, Hägerhäll C (2011) The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits. J Mol Evol 72(5–6):484–497. doi:10.1007/s00239-011-9447-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson JL, Fung JM, Cadillo-Quiroz H, Cheng X, Zinder SH (2011) A role for Dehalobacter spp. in the reductive dehalogenation of dichlorobenzenes and monochlorobenzene. Environ Sci Technol 45(16):6806–6813. doi:10.1021/es200480k

    Article  CAS  PubMed  Google Scholar 

  • Nelson JL, Jiang J, Zinder SH (2014) Dehalogenation of chlorobenzenes, dichlorotoluenes, and tetrachloroethene by three Dehalobacter spp. Environ Sci Technol 48(7):3776–3782. doi:10.1021/es4044769

    Article  CAS  PubMed  Google Scholar 

  • Neumann A, Wohlfarth G, Diekert G (1998) Tetrachloroethene dehalogenase from Dehalospirillum multivorans: cloning, sequencing of the encoding genes, and expression of the pceA gene in Escherichia coli. J Bacteriol 180(16):4140–4145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nonaka H, Keresztes G, Shinoda Y, Ikenaga Y, Abe M, Naito K, Inatomi K, Furukawa K, Inui M, Yukawa H (2006) Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J Bacteriol 188(6):2262–2274. doi:10.1128/JB.188.6.2262-2274.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickett MW, Weiss N, Kelly DJ (1994) Gram-positive cell wall structure of the A3γ type in heliobacteria. FEMS Microbiol Lett 122(1–2):7–12. doi:10.1111/j.1574-6968.1994.tb07135.x

    Article  CAS  PubMed  Google Scholar 

  • Prat L, Maillard J, Grimaud R, Holliger C (2011) Physiological adaptation of Desulfitobacterium hafniense strain TCE1 to tetrachloroethene respiration. Appl Environ Microbiol 77(11):3853–3859. doi:10.1128/aem.02471-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regeard C, Maillard J, Holliger C (2004) Development of degenerate and specific PCR primers for the detection and isolation of known and putative chloroethene reductive dehalogenase genes. J Microbiol Methods 56(1):107–118

    Article  CAS  PubMed  Google Scholar 

  • Rouzeau-Szynalski K, Maillard J, Holliger C (2011) Frequent concomitant presence of Desulfitobacterium spp. and “Dehalococcoides” spp. in chloroethene-dechlorinating microbial communities. Appl Microbiol Biotechnol 90(1):361–368. doi:10.1007/s00253-010-3042-0

    Article  CAS  PubMed  Google Scholar 

  • Rupakula A, Kruse T, Boeren S, Holliger C, Smidt H, Maillard J (2013) The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: lessons from tiered functional genomics. Philos Trans R Soc Lond B Biol Sci 368(1616):20120325. doi:10.1098/rstb.2012.0325

    Article  PubMed  PubMed Central  Google Scholar 

  • Rupakula A, Lu Y, Kruse T, Boeren S, Holliger C, Smidt H, Maillard J (2015) Functional genomics of corrinoid starvation in the organohalide-respiring bacterium Dehalobacter restrictus strain PER-K23. Front Microbiol 5:751. doi:10.3389/fmicb.2014.00751

  • Schumacher W, Holliger C (1996) The proton/electron ration of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in “Dehalobacter restrictus”. J Bacteriol 178(8):2328–2333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher W, Holliger C, Zehnder AJ, Hagen WR (1997) Redox chemistry of cobalamin and iron-sulfur cofactors in the tetrachloroethene reductase of Dehalobacter restrictus. FEBS Lett 409(3):421–425

    Article  CAS  PubMed  Google Scholar 

  • Smidt H, van Leest M, van der Oost J, de Vos WM (2000) Transcriptional regulation of the cpr gene cluster in ortho-chlorophenol-respiring Desulfitobacterium dehalogenans. J Bacteriol 182(20):5683–5691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun BL, Griffin BM, Ayala-del-Rio HL, Hashsham SA, Tiedje JM (2002) Microbial dehalorespiration with 1,1,1-trichloroethane. Science 298(5595):1023–1025. doi:10.1126/science.1074675

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Gong Y, Edwards EA (2012) Semi-automatic in silico gap closure enabled de novo assembly of two Dehalobacter genomes from metagenomic data. PLoS ONE 7(12):e52038. doi:10.1371/journal.pone.0052038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang YJ, Yi S, Zhuang W-Q, Zinder SH, Keasling JD, Alvarez-Cohen L (2009) Investigation of carbon metabolism in “Dehalococcoides ethenogenes” strain 195 by Use of isotopomer and transcriptomic analyses. J Bacteriol 191(16):5224–5231. doi:10.1128/jb.00085-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Doesburg W, van Eekert MH, Middeldorp PJ, Balk M, Schraa G, Stams AJ (2005) Reductive dechlorination of beta-hexachlorocyclohexane (beta-HCH) by a Dehalobacter species in coculture with a Sedimentibacter sp. FEMS Microbiol Ecol 54(1):87–95. doi:10.1016/j.femsec.2005.03.003

    Article  PubMed  Google Scholar 

  • Villemur R, Lanthier M, Beaudet R, Lepine F (2006) The Desulfitobacterium genus. FEMS Microbiol Rev 30(5):706–733

    Article  CAS  PubMed  Google Scholar 

  • von Wintzingerode F, Schlotelburg C, Hauck R, Hegemann W, Gobel UB (2001) Development of primers for amplifying genes encoding CprA- and PceA-like reductive dehalogenases in anaerobic microbial consortia, dechlorinating trichlorobenzene and 1,2-dichloropropane. FEMS Microbiol Ecol 35(2):189–196

    Article  Google Scholar 

  • Wang S, He J (2013) Dechlorination of commercial PCBs and other multiple halogenated compounds by a sediment-free culture containing Dehalococcoides and Dehalobacter. Environ Sci Technol 47(18):10526–10534. doi:10.1021/es4017624

    CAS  PubMed  Google Scholar 

  • Wang S, Zhang W, Yang KL, He J (2014) Isolation and characterization of a novel Dehalobacter species strain TCP1 that reductively dechlorinates 2,4,6-trichlorophenol. Biodegradation 25(2):313–323. doi:10.1007/s10532-013-9662-1

    Article  CAS  PubMed  Google Scholar 

  • Wild A, Hermann R, Leisinger T (1996) Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation 7(6):507–511. doi:10.1007/bf00115297

    Article  CAS  PubMed  Google Scholar 

  • Yoshida N, Ye L, Baba D, Katayama A (2009) A novel Dehalobacter species is involved in extensive 4,5,6,7-tetrachlorophthalide dechlorination. Appl Environ Microbiol 75(8):2400–2405. doi:10.1128/aem.02112-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Suzuki D, Li Z, Ye L, Katayama A (2012) Polyphasic characterization of two microbial consortia with wide dechlorination spectra for chlorophenols. J Biosci Bioeng 114(5):512–517. doi:10.1016/j.jbiosc.2012.05.025

    Article  CAS  PubMed  Google Scholar 

  • Zhang CF, Li ZL, Suzuki D, Ye LZ, Yoshida N, Katayama A (2013) A humin-dependent Dehalobacter species is involved in reductive debromination of tetrabromobisphenol A. Chemosphere 92(10):1343–1348. doi:10.1016/j.chemosphere.2013.05.051

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Holliger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maillard, J., Holliger, C. (2016). The Genus Dehalobacter . In: Adrian, L., Löffler, F. (eds) Organohalide-Respiring Bacteria. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49875-0_8

Download citation

Publish with us

Policies and ethics