Skip to main content

Energetic Considerations in Organohalide Respiration

  • Chapter
  • First Online:
Organohalide-Respiring Bacteria

Abstract

Organohalide-respiring bacteria harness energy using halogenated organic compounds as electron acceptors. The objective of this chapter is to evaluate the thermodynamics and energetics of organohalide respiration, that is, (i) how much energy the organisms can obtain from dehalogenation, and how this energy compares to the energy available from other electron acceptors; (ii) how much energy the organisms actually harness from the dehalogenation reactions; and (iii) how much energy the organisms not only forfeit but actually dissipate when they convert halogenated compounds co-metabolically rather than metabolically. Alternative fates of organohalides—their anaerobic oxidation and fermentation—are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bylaska EJ, Dixon DA, Felmy AR, AprĂ  E, Windus TL, Zhan C-G, Tratnyek PG (2004) The energetics of the hydrogenolysis, dehydrohalogenation, and hydrolysis of 4,4′-dichloro-diphenyl-trichloroethane from a initio electronic structure theory. J Phys Chem A 108:5883–5893

    Article  CAS  Google Scholar 

  • Chen SD, Liu HX, Wang ZY (2007) Study of structural and thermodynamic properties for polychlorinated dibenzothiophenes by density functional theory. J Chem Eng Data 52:1195–1202

    Article  CAS  Google Scholar 

  • Davis CK, Webb RI, Sly LI, Denman SE, McSweeney CS (2012) Isolation and survey of novel fluoroacetate-degrading bacteria belonging to the phylum Synergistetes. FEMS Microbiol Ecol 80:671–684

    Article  CAS  PubMed  Google Scholar 

  • Dick JM, Evans KA, Holman AI, Jaraula CMB, Grice K (2013) Estimation and application of the thermodynamic properties of aqueous phenanthrene and isomers of methylphenanthrene at high temperature. Geochim Cosmochim Acta 122:247–266

    Article  CAS  Google Scholar 

  • Ding C, Siyan Zhao S, He J (2014) A Desulfitobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform. Environ Microbiol 16:3387–3397

    Article  CAS  PubMed  Google Scholar 

  • Dolfing J (1990) Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch Microbiol 153:264–266

    Article  CAS  PubMed  Google Scholar 

  • Dolfing J (1995) Regiospecificity of chlorophenol reductive dechlorination by vitamin B12s. Appl Environ Microbiol 61:2450–2451

    CAS  Google Scholar 

  • Dolfing J (2000) Energetics of anaerobic degradation pathways of chlorinated aliphatic compounds. Microb Ecol 40:2–7

    Article  CAS  PubMed  Google Scholar 

  • Dolfing J (2003) Thermodynamic considerations for dehalogenation. In: Häggblom MM, Bossert ID (eds) Dehalogenation: microbial processes and environmental applications. Kluwer, Boston, pp 89–114

    Google Scholar 

  • Dolfing J (2015) Protocols for calculating reaction kinetics and thermodynamics. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols: statistics, data analysis, bioinformatics and modelling. Spinger, Berlin. doi:10.1007/8623_2015_109

    Google Scholar 

  • Dolfing J, Harrison BK (1992) The Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments. Environ Sci Technol 26:2213–2218

    Article  CAS  Google Scholar 

  • Dolfing J, Janssen DB (1994) Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds. Biodegradation 5:21–28

    CAS  Google Scholar 

  • Dolfing J, Novak I (2015) The Gibbs free energy of formation of halogenated benzenes, benzoates and phenols and their potential role as electron acceptors in anaerobic environments. Biodegradation 26:15–27

    Article  CAS  PubMed  Google Scholar 

  • Dolfing J, Tiedje JM (1987) Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Arch Microbiol 149:102–105

    Article  CAS  PubMed  Google Scholar 

  • Dolfing J, Larter SR, Head IM (2008) Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J 2:442–452

    Article  CAS  PubMed  Google Scholar 

  • Dolfing J, Novak I, Archelas A, Macarie H (2012) Gibbs free energy of formation of chlordecone and potential degradation products: implications for remediation strategies and environmental fate. Environ Sci Technol 46:8131–8139

    Article  CAS  PubMed  Google Scholar 

  • Goldman P (1965) Enzymatic cleavage of carbon-fluorine bond in fluoroacetate. J Biol Chem 240:3434–3438

    CAS  PubMed  Google Scholar 

  • Gribble GW (2002) Naturally occurring organofluorines. In: Hutzinger O (ed) Handbook of environmental chemistry, vol 3. Springer, Heidelberg, pp 121–136

    Google Scholar 

  • Guerard JJ, Arey JS (2013) Critical evaluation of implicit solvent models for predicting aqueous oxidation potentials of neutral organic compounds. J Chem Theory Comput 9:5046–5058

    Article  CAS  PubMed  Google Scholar 

  • Hanselmann KW (1991) Microbial energetics applied to waste repositories. Experientia 47:645–687

    Article  CAS  Google Scholar 

  • Holmes DA, Harrison BK, Dolfing J (1993) Estimation of Gibbs free energies of formation of polychlorinated biphenyls. Environ Sci Technol 27:725–731

    Article  CAS  Google Scholar 

  • Huang C-L, Harrison BK, Madura J, Dolfing J (1996) Thermodynamic prediction of dehalogenation pathways for PCDDs. Environ Toxicol Chem 15:824–836

    Article  CAS  Google Scholar 

  • Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Phil Trans R Soc B Biol Sci 368:20120322

    Article  Google Scholar 

  • Jablonski PE, Pheasant DJ, Ferry JG (1996) Conversion of kepone by Methanosarcina thermophila. FEMS Microbiol Lett 139:169–173

    Article  CAS  Google Scholar 

  • Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V (2008) Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 95:1487–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Justicia-Leon SD, Ritalahti KM, Mack EE, Löffler FE (2012) Dichloromethane fermentation by a Dehalobacter sp. in an enrichment culture derived from pristine river sediment. Appl Environ Microbiol 78:1288–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk KL (1991) Biochemistry of the elemental halogens and inorganic halides. Plenum Press, New York

    Book  Google Scholar 

  • Leys D, Adrian L, Smidt H (2013) Organohalide respiration: microbes breathing chlorinated molcecules. Phil Trans R Soc B Biol Sci 368:20120316

    Article  Google Scholar 

  • Li XW, Shibata E, Nakamura T (2003) Theoretical calculation of thermodynamic properties of polybrominated dibenzo-p-dioxins. J Chem Eng Data 48:725–735

    Google Scholar 

  • Löffler FE, Tiedje JM, Sanford RA (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators in halorespiratory physiology. Appl Environ Microbiol 65:4049–4056

    PubMed  PubMed Central  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (1997) Brock biology of microorganisms, 8th edn. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Madsen EL (2008) Environmental microbiology: from genomes to biogeochemistry. Wiley, New York

    Google Scholar 

  • Mägli A, Rainey FA, Leisinger T (1995) Acetogenesis from dichloromethane by a two-component mixed culture comprising a novel bacterium. Appl Environ Microbiol 61:2929–2943

    Google Scholar 

  • Mägli A, Wendt M, Leisinger T (1996) Isolation and characterization of Dehalobacterium formicoaceticum gen. nov. sp. nov., a strictly anaerobic bacterium utilizing dichloromethane a source of carbon and energy. Arch Microbiol 166:101–108

    Article  Google Scholar 

  • Mägli A, Messmer M, Leisinger T (1998) Metabolism of dichloromethane by the strict anaerobe Dehalobacterium formicoaceticum. Appl Environ Microbiol 64:646–650

    PubMed  PubMed Central  Google Scholar 

  • Maphosa F, de Vos WM, Smidt H (2010) Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria. Trends Biotechnol 28:308–316

    Article  CAS  PubMed  Google Scholar 

  • Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  • Mavrovouniotis ML (1990) Group contributions for estimating standard Gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnol Bioeng 36:1070–1082

    Article  CAS  PubMed  Google Scholar 

  • Mavrovouniotis ML (1991) Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem 266:14440–14445

    CAS  PubMed  Google Scholar 

  • Mayer-Blackwell K et al, Spormann A (2015) Integrative and comparative physiology of OHRB’s. In: Löffler FE, Adrain E (eds) Organohalide respiring bacteria. Springer, Heidelberg, pp XX–YY

    Google Scholar 

  • Maymo-Gatell X, Nijenhuis I, Zinder SH (2001) Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes” 195. Environ Sci Technol 35:516–521

    Article  CAS  PubMed  Google Scholar 

  • McCarty PL (1997) Microbiology—breathing with chlorinated solvents. Science 276:1521–1522

    Article  CAS  PubMed  Google Scholar 

  • Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56:482–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy CD (2010) Biodegradation and biotransformation of organofluorine compounds. Biotechnol Lett 32:351–359

    Article  CAS  PubMed  Google Scholar 

  • Parsons JR, Sáez M, Dolfing J, de Voogt P (2008) Biodegradation of perfluorinated compounds. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 196. Springer, Heidelberg, pp 53–71

    Google Scholar 

  • Reineke W (1984) Microbial degradation of halogenated aromatic compounds. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, pp 319–360

    Google Scholar 

  • Sadowsky D, McNeill K, Cramer CJ (2013) Thermochemical factors affecting the dehalogenation of aromatics. Environ Sci Technol 47:14194–14203

    Article  CAS  PubMed  Google Scholar 

  • Schrauzer GN, Katz RN (1978) Reductive dechlorination and degradation of Mirex and Kepone with vitamin B12s. Bioinorg Chem 9:123–143

    Article  CAS  PubMed  Google Scholar 

  • Shock EL, Helgeson HC (1990) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of organic species. Geochim Cosmochim Acta 54:915–945

    Article  CAS  Google Scholar 

  • Smith MH, Woods SL (1994) Regiospecificity of chlorophenol reductive dechlorination by vitamin B12s. Appl Environ Microbiol 60:4111–4115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Speight JG (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New York

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Eekert MHA (1999) Transformation of chlorinated compounds by methanogenic granular sludge. PhD thesis, Wageningen University, Wageningen

    Google Scholar 

  • van Eekert MHA, Stams AJM, Field JA, Schraa G (1999) Gratuitous dechlorination of chloroethanes by methanogenic granular sludge. Appl Microbiol Biotechnol 51:46–52

    Article  Google Scholar 

  • Vargas C, Song B, Camps M, Häggblom MM (2000) Anaerobic degradation of fluorinated aromatic compounds. Appl Microbiol Biotechnol 53:342–347

    Article  CAS  PubMed  Google Scholar 

  • Vogels GD, Keltjens JT, van der Drift (1988) Biochemistry of methane production. In: Zehnder AJB (ed) Biology of Anaerobic Microorganisms. Wiley-Interscience, New York, pp 707–770

    Google Scholar 

  • Wackett LP (1995) Bacterial co-metabolism of halogenated organic compounds. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, pp 217–241

    Google Scholar 

  • Yuan LX, Yu J, Wang ZY et al (2006) Thermodynamic property and relative stability of 76 polybrominated naphthalenes by density functional theory. J Chem Eng Data 51:2032–2037

    Article  CAS  Google Scholar 

  • Zehnder AJB, Stumm W (1988) Geochemistry and biogeochemistry of anaerobic habitats. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley-Interscience, New York, pp 1–38

    Google Scholar 

  • Zeng XL, Yu YS (2013) Theoretical study on the molecular structures and thermodynamic properties of polychlorinated pyrenes. Comp Theor Chem 1013:92–96

    Article  CAS  Google Scholar 

  • Zeng XL, Wang Y, Zhang XL, Yu YS (2009) Density functional theory studies on the molecular structures and thermodynamic properties of polychlorinated anthracenes. J Mol Struct THEOCHEM 906:83–86

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Dolfing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dolfing, J. (2016). Energetic Considerations in Organohalide Respiration. In: Adrian, L., Löffler, F. (eds) Organohalide-Respiring Bacteria. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49875-0_3

Download citation

Publish with us

Policies and ethics