Skip to main content

Redox Interactions of Organohalide-Respiring Bacteria (OHRB) with Solid-State Electrodes: Principles and Perspectives of Microbial Electrochemical Remediation

  • Chapter
  • First Online:
Organohalide-Respiring Bacteria

Abstract

Recent studies have revealed that a number of organohalide-respiring bacteria (OHRB) are capable to establish redox interactions with solid-state electrodes by using them as direct or indirect electron donors in their energy metabolism. Although the biochemical, ecological, and evolutionary significance of electron transfer capabilities in OHRB remain largely unknown, they are increasingly being considered for bioremediation applications. In principle, bioelectrochemical remediation systems which use insoluble electrodes to drive the microbial reduction of chlorinated compounds offer numerous advantages compared to conventional approaches, such as the possibility to fine-tune the rate of electron delivery and consumption, avoid injection of chemicals to the subsurface environment and ultimately gain a more direct control over the biodegradation reactions taking place at the electrodes. In spite of that, however, the technology is still in its infancy and further research and extensive field testing is needed to prove its actual potential for site remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AQDS:

Anthraquinone-2,6-disulfonate

BES:

Bioelectrochemical systems

cis-DCE:

cis-Dichloroethene

DET:

Direct electron transfer

DIET:

Direct interspecies electron transfer

EET:

Extracellular electron transfer

ETH:

Ethene

MV:

Methyl viologen

OHRB:

Organohalide-respiring bacteria

PCE:

Tetrachloroethene

SHE:

Standard hydrogen electrode

TCE:

Trichloroethene

VC:

Vinyl chloride

References

  • Aulenta F, Gossett JM, Papini MP, Rossetti S, Majone M (2005) Comparative study of methanol, butyrate, and hydrogen as electron donors for long-term dechlorination of tetrachloroethene in mixed anerobic cultures. Biotechnol Bioeng 91(6):743–753

    Article  CAS  PubMed  Google Scholar 

  • Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S (2007a) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41(7):2554–2559. doi:10.1021/es0624321

    Article  CAS  PubMed  Google Scholar 

  • Aulenta F, Pera A, Rossetti S, Papini MP, Majone M (2007b) Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Res 41(1):27–38

    Article  CAS  PubMed  Google Scholar 

  • Aulenta F, Canosa A, Majone M, Panero S, Reale P, Rossetti S (2008a) Trichloroethene dechlorination and H2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system. Environ Sci Technol 42(16):6185–6190

    Article  CAS  PubMed  Google Scholar 

  • Aulenta F, Reale P, Catervi A, Panero S, Majone M (2008b) Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system. Electrochim Acta 53(16):5300–5305

    Article  CAS  Google Scholar 

  • Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M (2009) Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol Bioeng 103(1):85–91

    Article  CAS  PubMed  Google Scholar 

  • Aulenta F, Di Maio V, Ferri T, Majone M (2010) The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene. Bioresour Technol 101(24):9728–9733

    Article  CAS  PubMed  Google Scholar 

  • Aulenta F, Ferri T, Nicastro D, Majone M, Papini MP (2011a) Improved electrical wiring of microbes: anthraquinone-modified electrodes for biosensing of chlorinated hydrocarbons. New Biotechnol 29(1):126–131

    Article  CAS  Google Scholar 

  • Aulenta F, Tocca L, Verdini R, Reale P, Majone M (2011b) Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor: effect of cathode potential on rate, selectivity, and electron transfer mechanisms. Environ Sci Technol 45(19):8444–8451

    Article  CAS  PubMed  Google Scholar 

  • Aulenta F, Rossetti S, Amalfitano S, Majone M, Tandoi V (2013) Conductive magnetite nanoparticles accelerate the microbial reductive dechlorination of trichloroethene by promoting interspecies electron transfer processes. Chemsuschem 6(3):433–436

    Article  CAS  PubMed  Google Scholar 

  • Aulenta F, Fazi S, Majone M, Rossetti S (2014) Electrically conductive magnetite particles enhance the kinetics and steer the composition of anaerobic TCE-dechlorinating cultures. Process Biochem. doi:10.1016/j.procbio.2014.09.015

    Google Scholar 

  • Cervantes FJ, Martinez CM, Gonzalez-Estrella J, Marquez A, Arriaga S (2013) Kinetics during the redox biotransformation of pollutants mediated by immobilized and soluble humic acids. Appl Microbiol Biotechnol 97(6):2671–2679

    Article  CAS  PubMed  Google Scholar 

  • Chun CL, Payne RB, Sowers KR, May HD (2013) Electrical stimulation of microbial PCB degradation in sediment. Water Res 47(1):141–152

    Article  CAS  PubMed  Google Scholar 

  • Di Battista A, Verdini R, Rossetti S, Pietrangeli B, Majone M, Aulenta F (2012) CARD-FISH analysis of a TCE-dechlorinating biocathode operated at different set potentials. New Biotechnol 30(1):33–38

    Article  Google Scholar 

  • Fennell DE, Stover MA, Zinder SH, Gossett JM (1995) Comparison of alternative electron donors to sustain PCE anaerobic reductive dechlorination. Bioremediat Chlorinated Solvents 3(4):9–16

    Google Scholar 

  • Friedman ES, Rosenbaum MA, Lee AW, Lipson DA, Land BR, Angenent LT (2012) A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration. Biosens Bioelectron 32(1):309–313

    Article  CAS  PubMed  Google Scholar 

  • Harnisch F, Aulenta F, Schroeder U (2011) Microbial fuel cells and bioelectrochemical systems: industrial and environmental biotechnologies based on extracellular electron transfer. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 643–659

    Chapter  Google Scholar 

  • Ho SV, Sheridan PW, Athmer CJ, Heitkamp MA, Brackin JM, Weber D, Brodsky PH (1995) Integrated in-situ soil remediation technology—the lasagna process. Environ Sci Technol 29(10):2528–2534

    Article  CAS  PubMed  Google Scholar 

  • Ho SV, Athmer C, Sheridan PW, Hughes BM, Orth R, McKenzie D, Brodsky PH, Shapiro A, Thornton R, Salvo J, Schultz D, Landis R, Griffith R, Shoemaker S (1999a) The lasagna technology for in situ soil remediation. 1. Small field test. Environ Sci Technol 33(7):1086–1091

    Article  CAS  Google Scholar 

  • Ho SV, Athmer C, Sheridan PW, Hughes BM, Orth R, McKenzie D, Brodsky PH, Shapiro AM, Sivavec TM, Salvo J, Schultz D, Landis R, Griffith R, Shoemaker S (1999b) The lasagna technology for in situ soil remediation. 2. Large field test. Environ Sci Technol 33(7):1092–1099

    Article  CAS  Google Scholar 

  • Huang LP, Regan JM, Quan X (2011) Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol 102(1):316–323

    Article  CAS  PubMed  Google Scholar 

  • Huang LP, Chai XL, Quan X, Logan BE, Chen GH (2012) Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresour Technol 111:167–174

    Article  CAS  PubMed  Google Scholar 

  • Kassenga GR, Pardue JH (2006) Effect of competitive terminal electron acceptor processes on dechlorination of cis-1,2-dichloroethene and 1,2-dichloroethane in constructed wetland soils. FEMS Microbiol Ecol 57(2):311–323

    Article  CAS  PubMed  Google Scholar 

  • Kong FY, Wang AJ, Ren HY (2014) Improved 4-chlorophenol dechlorination at biocathode in bioelectrochemical system using optimized modular cathode design with composite stainless steel and carbon-based materials. Bioresour Technol 166:252–258

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Lei LC, Yang B, Yu QN, Li ZJ (2013) Direct electron transfer from electrode to electrochemically active bacteria in a bioelectrochemical dechlorination system. Bioresour Technol 148:9–14

    Article  CAS  PubMed  Google Scholar 

  • Löffler FE, Tiedje JM, Sanford RA (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl Environ Microbiol 65(9):4049–4056

    PubMed  PubMed Central  Google Scholar 

  • Lohner ST, Becker D, Mangold KM, Tiehm A (2011) Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process. Environ Sci Technol 45(15):6491–6497

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2008) Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiology 6(3):225–231

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2011) Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy. Rev Environ Sci Bio-Technol 10(2):101–105

    Article  Google Scholar 

  • Luijten MLGC, Roelofsen W, Langenhoff AAM, Schraa G, Stams AJM (2004a) Hydrogen threshold concentrations in pure cultures of halorespiring bacteria and at a site polluted with chlorinated ethenes. Environ Microbiol 6(6):646–650

    Article  CAS  PubMed  Google Scholar 

  • Luijten MLGC, Weelink SAB, Godschalk B, Langenhoff AAM, van Eekert MHA, Schraa G, Stams AJM (2004b) Anaerobic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms. FEMS Microbiol Ecol 49(1):145–150

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. Mbio 2(4):e00159-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris RM, Sowell S, Barofsky D, Zinder S, Richardson R (2006) Transcription and mass-spectroscopic proteomic studies of electron transport oxidoreductases in Dehalococcoides ethenogenes. Environ Microbiol 8(9):1499–1509. doi:10.1111/j.1462-2920.2006.01090.x

    Article  CAS  PubMed  Google Scholar 

  • Nijenhuis I, Zinder SH (2005) Characterization of hydrogenase and reductive dehalogenase activities of Dehalococcoides ethenogenes strain 195. Appl Environ Microbiol 71(3):1664–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pous N, Puig S, Coma M, Balaguer MD, Colprim J (2013) Bioremediation of nitrate-polluted groundwater in a microbial fuel cell. J Chem Technol Biotechnol 88(9):1690–1696

    Article  CAS  Google Scholar 

  • Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 102(1):324–333

    Article  CAS  PubMed  Google Scholar 

  • Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459

    Article  CAS  PubMed  Google Scholar 

  • Skadberg B, Geoly-Horn SL, Sangamalli V, Flora JRV (1999) Influence of pH, current and copper on the biological dechlorination of 2,6-dichlorophenol in an electrochemical cell. Water Res 33(9):1997–2010

    Article  CAS  Google Scholar 

  • Smatlak CR, Gossett JM, Zinder SH (1996) Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environ Sci Technol 30(9):2850–2858

    Article  CAS  Google Scholar 

  • Strycharz SM, Woodard TL, Johnson JP, Nevin KP, Sanford RA, Loffler FE, Lovley DR (2008) Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol 74(19):5943–5947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strycharz SM, Gannon SM, Boles AR, Franks AE, Nevin KP, Lovley DR (2010) Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor. Environ Microbiol Rep 2(2):289–294

    Article  CAS  PubMed  Google Scholar 

  • Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330(6009):1413–1415

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Yan F, Zhang RL, Reible DD, Lowry GV, Gregory KB (2010) Redox control and hydrogen production in sediment caps using carbon cloth electrodes. Environ Sci Technol 44(21):8209–8215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JZ, Kingori GP, Si RW, Zhai DD, Liao ZH, Sun DZ, Zheng T, Yong YC (2015) Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci Technol 71(6):801–809

    Article  CAS  PubMed  Google Scholar 

  • Trombly J (1994) Electrochemical remediation takes to the field. Environ Sci Technol 28(6):A289–A291

    Article  Google Scholar 

  • Villano M, De Bonis L, Rossetti S, Aulenta F, Majone M (2011) Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents. Bioresour Technol 102(3):3193–3199

    Article  CAS  PubMed  Google Scholar 

  • Zhang RL, Lu XX, Reible DD, Jiao GZ, Qin SY (2013) Cathodic hydrogen as electron donor in enhanced reductive dechlorination. Chin J Chem Eng 21(12):1386–1390

    Article  CAS  Google Scholar 

  • Zhang DD, Zhang CF, Li ZL, Suzuki D, Komatsu DD, Tsunogai U, Katayama A (2014) Electrochemical stimulation of microbial reductive dechlorination of pentachlorophenol using solid-state redox mediator (humin) immobilization. Bioresour Technol 164:232–240

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Aulenta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aulenta, F., Rossetti, S., Matturro, B., Tandoi, V., Verdini, R., Majone, M. (2016). Redox Interactions of Organohalide-Respiring Bacteria (OHRB) with Solid-State Electrodes: Principles and Perspectives of Microbial Electrochemical Remediation. In: Adrian, L., Löffler, F. (eds) Organohalide-Respiring Bacteria. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49875-0_21

Download citation

Publish with us

Policies and ethics