Skip to main content

Natural Production of Organohalide Compounds in the Environment

  • Chapter
  • First Online:
Organohalide-Respiring Bacteria

Abstract

More than 5000 natural organohalogen compounds have been identified. In terrestrial environments, the bulk of the organochlorine is locked up in humic polymers, collectively accounting for a global organochlorine storage of several million Gg. Natural sources are primarily responsible for the global budget of chloromethane and chloroform. Basidiomycete fungi involved in the decomposition of forest litter produce large quantities of chlorinated phenolic methyl ethers. In marine environments naturally occurring chlorinated and brominated bipyrroles as well as methoxypolybrominated phenyl ethers biomagnify in sea mammals. There are at least five distinct halogenating enzyme systems: (1) methyl transferases; (2) heme haloperoxidases; (3) vandadium haloperoxidases; (4) flavin-dependent halogenases and (5) α-ketoglutarate/Fe(II) dependent halogenases. Natural halogenated phenolic metabolites are subject to biotransformation including O-demethylation and organohalide respiration. Naturally occurring phenolics are also polymerized by oxidative enzymes to dioxins and chlorohumus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsson K, Ekdahl A, Collen J, Pedersen M (1995) Marine algae—a source of trichloroethylene and perchloroethylene. Limnol Oceanogr 40(7):1321–1326

    Article  CAS  Google Scholar 

  • Ando K, Kato A, Suzuki S (1970) Isolation 2,4-dichorophenol from a soil fungus and its biological significance. Biochem Biophys Res Commun 39(6):1104. doi:10.1016/0006-291x(70)90672-8

    Article  CAS  PubMed  Google Scholar 

  • Arnoldsson K, Andersson PL, Haglund P (2012) Formation of environmentally relevant brominated dioxins from 2,4,6,-tribromophenol via bromoperoxidase-catalyzed dimerization. Environ Sci Technol 46(13):7239–7244. doi:10.1021/es301255e

    Article  CAS  PubMed  Google Scholar 

  • Asplund G, Grimvall A, Pettersson C (1989) Naturally produced adsorbable organic halogens (AOX) in humic substances from soil and water. Sci Total Environ 81–2:239–248. doi:10.1016/0048-9697(89)90130-7

    Article  Google Scholar 

  • Asplund G, Christiansen JV, Grimvall A (1993) A chloroperoxidase-like catalyst in soil—detection and characterization of some properties. Soil Biol Biochem 25(1):41–46. doi:10.1016/0038-0717(93)90239-8

    Article  CAS  Google Scholar 

  • Ballschmiter K (2003) Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. Chemosphere 52(2):313–324. doi:10.1016/s0045-6535(03)00211-x

    Article  CAS  PubMed  Google Scholar 

  • Bastviken D, Thomsen F, Svensson T, Karlsson S, Sanden P, Shaw G, Matucha M, Oberg G (2007) Chloride retention in forest soil by microbial uptake and by natural chlorination of organic matter. Geochim Cosmochim Acta 71(13):3182–3192. doi:10.1016/j.gca.2007.04.028

    Article  CAS  Google Scholar 

  • Biester H, Keppler F, Putschew A, Martinez-Cortizas A, Petri M (2004) Halogen retention, organohalogens, and the role of organic matter decomposition on halogen enrichment in two Chilean peat bogs. Environ Sci Technol 38(7):1984–1991. doi:10.1021/es0348492

    Article  CAS  PubMed  Google Scholar 

  • Breider F, Hunkeler D (2014a) Investigating chloroperoxidase-catalyzed formation of chloroform from humic substances using stable chlorine isotope analysis. Environ Sci Technol 48(3):1592–1600. doi:10.1021/es403879e

    Article  CAS  PubMed  Google Scholar 

  • Breider F, Hunkeler D (2014b) Mechanistic insights into the formation of chloroform from natural organic matter using stable carbon isotope analysis. Geochim Cosmochim Acta 125:85–95. doi:10.1016/j.gca.2013.09.028

    Article  CAS  Google Scholar 

  • Butler A, Sandy M (2009) Mechanistic considerations of halogenating enzymes. Nature 460(7257):848–854. doi:10.1038/nature08303

    Article  CAS  PubMed  Google Scholar 

  • Cabrita MT, Vale C, Rauter AP (2010) Halogenated compounds from marine algae. Mar Drug 8(8):2301–2317. doi:10.3390/md8082301

    Article  CAS  Google Scholar 

  • Chen XP, van Pee KH (2008) Catalytic mechanisms, basic roles, and biotechnological and environmental significance of halogenating enzymes. Acta Biochim Biophys Sin 40(3):183–193. doi:10.1111/j.1745-7270.2008.00390.x

    Article  CAS  PubMed  Google Scholar 

  • Collen J, Ekdahl A, Abrahamsson K, Pedersen M (1994) The involvement of hydrogen-peroxide in the production of volatile halogenated compounds by Meristiella gelidium. Phytochemistry 36(5):1197–1202. doi:10.1016/s0031-9422(00)89637-5

    Article  CAS  Google Scholar 

  • Daferner M, Anke T, Hellwig V, Steglich W, Sterner O (1998) Strobilurin M, tetrachloropyrocatechol and tetrachloropyrocatechol methyl ether: new antibiotics from a Mycena species. J Antibiot 51(9):816–822

    Article  CAS  PubMed  Google Scholar 

  • Dahlman O, Morck R, Ljungquist P, Reimann A, Johansson C, Boren H, Grimvall A (1993) Chlorinated structural elements in high-molecular-weight organic-matter from unpolluted waters and bleached-kraft mill effluents. Environ Sci Technol 27(8):1616–1620. doi:10.1021/es00045a018

    Article  CAS  Google Scholar 

  • De Wever H, Cole JR, Fettig MR, Hogan DA, Tiedje JM (2000) Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen. nov., sp nov. Appl Environ Microbiol 66(6):2297–2301. doi:10.1128/aem.66.6.2297-2301.2000

    Article  PubMed  PubMed Central  Google Scholar 

  • de Jong E, Field JA (1997) Sulfur tuft and turkey tail: biosynthesis and biodegradation of organohalogens by basidiomycetes. Annu Rev Microbiol 51:375–414. doi:10.1146/annurev.micro.51.1.375

    Article  CAS  PubMed  Google Scholar 

  • de Jong E, Field JA, Spinnler HE, Wijnberg J, Debont JAM (1994) Significant biogenesis of chlorinated aromatics by fungi in natural environments. Appl Environ Microbiol 60(1):264–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fahimi IJ, Keppler F, Schöler HF (2003) Formation of chloroacetic acids from soil, humic acid and phenolic moieties. Chemosphere 52(2):513–520. doi:10.1016/s0045-6535(03)00212-1

    Article  CAS  PubMed  Google Scholar 

  • Field JA, Sierra-Alvarez R (2004) Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Rev Environ Sci Bio/Technol 3(3):185–254. doi:10.1007/s11157-004-4733-8

    Article  CAS  Google Scholar 

  • Field JA, Wijnberg JBPA (2003) An update on organohalogen metabolites produced by basidiomycetes. In: Gribble G (ed) Natural production of organohalogen compounds, vol 3. Springer, Berlin, pp 103–119

    Chapter  Google Scholar 

  • Field JA, Verhagen FJM, de Jong E (1995) Natural organohalogen production by basidiomycetes. Trends Biotechnol 13(11):451–456. doi:10.1016/s0167-7799(00)89001-0

    Article  CAS  Google Scholar 

  • Flodin C, Johansson E, Boren H, Grimvall A, Dahlman O, Morck R (1997) Chlorinated structures in high molecular weight organic matter isolated from fresh and decaying plant material and soil. Environ Sci Technol 31(9):2464–2468. doi:10.1021/es960374l

    Article  CAS  Google Scholar 

  • Frank H (1988) Trichloressigsaure im Boden: eine Ursache neuartiger Waldschaden. Nachr Chem Tech Lab 36:889

    CAS  Google Scholar 

  • Frankland J, Hedger JN, Swift MJ (2009) Decomposer basidiomycetes: their biology and ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Garvie LAJ, Wilkens B, Groy TL, Glaeser JA (2015) Substantial production of drosophilin A methyl ether (tetrachloro-1,4-dimethoxybenzene) by the lignicolous basidiomycete Phellinus badius in the heartwood of mesquite (Prosopis juliflora) trees. Naturwissenschaften 102(3–4):18

    Article  PubMed  CAS  Google Scholar 

  • Green NJL, Jones JL, Johnston AE, Jones KC (2001) Further evidence for the existence of PCDD/Fs in the environment prior as 1900. Environ Sci Technol 35(10):1974–1981. doi:10.1021/es0002161

    Article  CAS  PubMed  Google Scholar 

  • Green NJL, Hassanin A, Johnston AE, Jones KC (2004) Observations on historical, contemporary, and natural PCDD/Fs. Environ Sci Technol 38(3):715–723. doi:10.1021/es034599p

    Article  CAS  PubMed  Google Scholar 

  • Gribble GW (1992) Naturally occurring organohalogen compounds–a survey. J Nat Prod 55(10):1353–1395. doi:10.1021/np50088a001

    Article  CAS  Google Scholar 

  • Gribble GW (1996) Naturally occurring organohalogen compounds–a comprehensive survey. Prog Chem Org Nat Prod 68:1–423

    CAS  Google Scholar 

  • Gribble GW (2003a) The diversity of naturally produced organohalogens. In: Gribble G (ed) Natural production of organohalogen compounds, vol 3. Springer, Berlin, pp 1–15

    Chapter  Google Scholar 

  • Gribble GW (2003b) The diversity of naturally produced organohalogens. Chemosphere 52(2):289–297. doi:10.1016/s0045-6535(03)00207-8

    Article  CAS  PubMed  Google Scholar 

  • Gribble GW (2004a) Amazing organohalogens. Am Sci 92:342–349

    Article  Google Scholar 

  • Gribble GW (2004b) Natural organohalogens. Science Dossier 6. Euro Chlor, Brussels

    Google Scholar 

  • Gribble GW (2010) Naturally occurring organohalogen compounds—a comprehensive update. Progress in the chemistry of organic natural products, vol 91, pp 1–613. doi:10.1007/978-3-211-99323-1_1

    Google Scholar 

  • Gribble GW (2012) Recently discovered naturally occurring heterocyclic organohalogen compounds. Heterocycles 84(1):157–207. doi:10.3987/rev-11-sr(p)5

    Article  CAS  Google Scholar 

  • Gron C, Laturnus F, Jacobsen OS (2012) Reliable test methods for the determination of a natural production of chloroform in soils. Environ Monit Assess 184(3):1231–1241. doi:10.1007/s10661-011-2035-5

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Liu C, Ding YJ, Li H, Teppen BJ, Johnston CT, Boyd SA (2011) Clay mediated route to natural formation of polychlorodibenzo-p-dioxins. Environ Sci Technol 45(8):3445–3451. doi:10.1021/es104225d

    Article  CAS  PubMed  Google Scholar 

  • Gustavsson M, Karlsson S, Oberg G, Sanden P, Svensson T, Valinia S, Thiry Y, Bastviken D (2012) Organic matter chlorination rates in different boreal soils: the role of soil organic matter content. Environ Sci Technol 46(3):1504–1510. doi:10.1021/es203191r

    Article  CAS  PubMed  Google Scholar 

  • Haiber G, Jacob G, Niedan V, Nkusi G, Schöler HF (1996) The occurrence of trichloroacetic acid (TCAA)—indications of a natural production? Chemosphere 33(5):839–849. doi:10.1016/0045-6535(96)00239-1

    Article  CAS  Google Scholar 

  • Hamilton JTG, McRoberts WC, Keppler F, Kalin RM, Harper DB (2003) Chloride methylation by plant pectin: An efficient environmentally significant process. Science 301(5630):206–209. doi:10.1126/science.1085036

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi K, Kotaki Y, Relox JR, Romero MLJ, Terada R (2010) Monitoring of naturally produced brominated phenoxyphenols and phenoxyanisoles in aquatic plants from the philippines. J Agric Food Chem 58(23):12385–12391. doi:10.1021/jf103001n

    Article  CAS  PubMed  Google Scholar 

  • Harper DB (1985) Halomethane from halide ion—a highly efficient fungal conversion of environmental significance. Nature 315(6014):55–57. doi:10.1038/315055a0

    Article  CAS  Google Scholar 

  • Harper DB (2000) The global chloromethane cycle: biosynthesis, biodegradation and metabolic role. Nat Prod Rep 17(4):337–348. doi:10.1039/a809400d

    Article  CAS  PubMed  Google Scholar 

  • Harper DB, Hamilton JTG (1988) Biosynthesis of chloromethane in Phellinus pomaceus. J Gen Microbiol 134:2831–2839

    Google Scholar 

  • Harper DB, Hamilton JTG (2003) The global cycles of the naturally-occurring monohalomethanes. In: Gribble G (ed) Natural production of organohalogen compounds, vol 3. Springer, Berlin, pp 17–41

    Chapter  Google Scholar 

  • Haselmann KF, Ketola RA, Laturnus F, Lauritsen FR, Gron C (2000a) Occurrence and formation of chloroform at Danish forest sites. Atmos Environ 34(2):187–193. doi:10.1016/s1352-2310(99)00279-4

    Article  CAS  Google Scholar 

  • Haselmann KF, Laturnus F, Svensmark B, Gron C (2000b) Formation of chloroform in spruce forest soil—results from laboratory incubation studies. Chemosphere 41(11):1769–1774. doi:10.1016/s0045-6535(00)00044-8

    Article  CAS  PubMed  Google Scholar 

  • Haselmann KF, Laturnus F, Gron C (2002) Formation of chloroform in soil. A year-round study at a Danish spruce forest site. Water Air Soil Pollut 139(1–4):35–41. doi:10.1023/a:1015896719508

    Google Scholar 

  • Hiebl J, Lehnert K, Vetter W (2011) Identification of a fungi-derived terrestrial halogenated natural product in wild boar (Sus scrofa). J Agric Food Chem 59(11):6188–6192. doi:10.1021/jf201128r

    Article  CAS  PubMed  Google Scholar 

  • Hjelm O, Johansson MB, Oberg-Asplund G (1995) Organically bound halogens in coniferous forest soil—distribution pattern and evidence of in-situ production. Chemosphere 30(12):2353–2364. doi:10.1016/0045-6535(95)00107-j

    Article  CAS  Google Scholar 

  • Hjelm O, Boren H, Oberg G (1996) Analysis of halogenated organic compounds in coniferous forest soil from a Lepista nuda (wood blewitt) fairy ring. Chemosphere 32(9):1719–1728. doi:10.1016/0045-6535(96)00089-6

    Article  CAS  Google Scholar 

  • Hjelm O, Johansson E, Oberg G (1999) Production of organically bound halogens by the litter-degrading fungus Lepista nuda. Soil Biol Biochem 31(11):1509–1515. doi:10.1016/s0038-0717(99)00069-3

    Article  CAS  Google Scholar 

  • Hoekstra EJ, De Leer EWB, Brinkman UAT (1998a) Natural formation of chloroform and brominated trihalomethanes in soil. Environ Sci Technol 32(23):3724–3729. doi:10.1021/es980127c

    Article  CAS  Google Scholar 

  • Hoekstra EJ, Verhagen FJM, Field JA, De Leer EWB, Brinkman UAT (1998b) Natural production of chloroform by fungi. Phytochemistry 49(1):91–97. doi:10.1016/s0031-9422(97)00984-9

    Article  CAS  Google Scholar 

  • Hoekstra EJ, de Leer EWB, Brinkman UAT (1999a) Findings supporting the natural formation of trichloroacetic acid in soil. Chemosphere 38(12):2875–2883. doi:10.1016/s0045-6535(98)00487-1

    Article  CAS  Google Scholar 

  • Hoekstra EJ, De Weerd H, De Leer EWB, Brinkman UAT (1999b) Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environ Sci Technol 33(15):2543–2549. doi:10.1021/es9900104

    Article  CAS  Google Scholar 

  • Holmstrand H, Gadomski D, Mandalakis M, Tysklind M, Irvine R, Andersson P, Gustafsson O (2006) Origin of PCDDs in ball clay assessed with compound-specific chlorine isotope analysis and radiocarbon dating. Environ Sci Technol 40(12):3730–3735. doi:10.1021/es0602142

    Article  CAS  PubMed  Google Scholar 

  • Horii Y, van Bavel B, Kannan K, Petrick G, Nachtigall K, Yamashita N (2008) Novel evidence for natural formation of dioxins in ball clay. Chemosphere 70(7):1280–1289. doi:10.1016/j.chemosphere.2007.07.066

    Article  CAS  PubMed  Google Scholar 

  • Huber SG, Kotte K, Schöler HF, Williams J (2009) Natural abiotic formation of trihalomethanes in soil: results from laboratory studies and field samples. Environ Sci Technol 43(13):4934–4939. doi:10.1021/es8032605

    Article  CAS  PubMed  Google Scholar 

  • Keppler F, Eiden R, Niedan V, Pracht J, Schöler HF (2000) Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 403(6767):298–301. doi:10.1038/35002055

    Article  CAS  PubMed  Google Scholar 

  • Keppler F, Borchers R, Pracht J, Rheinberger S, Schöler HF (2002) Natural formation of vinyl chloride in the terrestrial environment. Environ Sci Technol 36(11):2479–2483. doi:10.1021/es015611j

    Article  CAS  PubMed  Google Scholar 

  • Keppler F, Harper DB, Rockmann T, Moore RM, Hamilton JTG (2005) New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. Atmos Chem Phys 5:2403–2411

    Article  CAS  Google Scholar 

  • Keppler F, Borchers R, Hamilton JTG, Kilian G, Pracht J, Schöler HF (2006) De novo formation of chloroethyne in soil. Environ Sci Technol 40(1):130–134. doi:10.1021/es0513279

    Article  CAS  PubMed  Google Scholar 

  • Khalil MAK, Rasmussen RA, French JRJ, Holt JA (1990) The influence of termites on atmospheric trace gases—CH4, CO2, CHCl3, N2O, CO, H2, and light-hydrocarbons. J Geophys Res Atmos 95(D4):3619–3634. doi:10.1029/JD095iD04p03619

    Article  Google Scholar 

  • Krzmarzick MJ, Crary BB, Harding JJ, Oyerinde OO, Leri AC, Myneni SCB, Novak PJ (2012) Natural niche for organohalide-respiring chloroflexi. Appl Environ Microbiol 78(2):393–401. doi:10.1128/aem.06510-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzmarzick MJ, Miller HR, Yan T, Novak PJ (2014) Novel firmicutes group implicated in the dechlorination of two chlorinated xanthones, analogues of natural organochlorines. Appl Environ Microbiol 80(3):1210–1218. doi:10.1128/aem.03472-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassen P, Randall A, Jorgensen O, Warwick P, Carlsen L (1994) Enzymatically mediated incorporation of 2-chlorophenol and 4-chlorophenol into humic acids. Chemosphere 28(4):703–710. doi:10.1016/0045-6535(94)90221-6

    Article  CAS  Google Scholar 

  • Laturnus F (2001) Marine macroalgae in polar regions as natural sources for volatile organohalogens. Environ Sci Pollut Res 8(2):103–108. doi:10.1007/bf02987302

    Article  CAS  Google Scholar 

  • Laturnus F, Mehrtens G, Gron C (1995) Haloperoxidase-like activity in spruce forest soil a source of volatile halogenated organic-compounds. Chemosphere 31(7):3709–3719. doi:10.1016/0045-6535(95)00220-3

    Article  CAS  Google Scholar 

  • Laturnus F, Haselmann KF, Borch T, Gron C (2002) Terrestrial natural sources of trichloromethane (chloroform, CHCl(3))—an overview. Biogeochemistry 60(2):121–139. doi:10.1023/a:1019887505651

    Article  CAS  Google Scholar 

  • Lauritsen FR, Lunding A (1998) A study of the bioconversion potential of the fungus Bjerkandera adusta with respect to a production of chlorinated aromatic compounds. Enzyme Microbial Technol 22(6):459–465. doi:10.1016/s0141-0229(97)00237-8

    Article  CAS  Google Scholar 

  • Leri AC, Myneni SCB (2010) Organochlorine turnover in forest ecosystems: the missing link in the terrestrial chlorine cycle. Global Biogeochem Cycles 24. doi:10.1029/2010gb003882

    Google Scholar 

  • Leri AC, Marcus MA, Myneni SCB (2007) X-ray spectromicroscopic investigation of natural organochlorine distribution in weathering plant material. Geochim Cosmochim Acta 71(23):5834–5846. doi:10.1016/j.gca.2007.09.001

    Article  CAS  Google Scholar 

  • Marshall RA, Hamilton JTG, Dring MJ, Harper DB (2000) The red alga Asparagopsis taxiformis/Falkenbergia hillebrandii—a possible source of trichloroethylene and perchloroethylene? Limnol Oceanogr 45(2):516–519

    CAS  Google Scholar 

  • Mester T, Swarts HJ, Sole SRI, DeBont JAM, Field JA (1997) Stimulation of aryl metabolite production in the basidiomycete Bjerkandera sp. strain BOS55 with biosynthetic precursors and lignin degradation products. Appl Environ Microbiol 63(5):1987–1994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milliken CE, Meier GP, Sowers KR, May HD (2004a) Chlorophenol production by anaerobic microorganisms: transformation of a biogenic chlorinated hydroquinone metabolite. Appl Environ Microbiol 70(4):2494–2496. doi:10.1128/aem.70.4.2494-2496.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milliken CE, Meier GP, Watts JEM, Sowers KR, May HD (2004b) Microbial anaerobic demethylation and dechlorination of chlorinated hydroquinone metabolites synthesized by basidiomycete fungi. Appl Environ Microbiol 70(1):385–392. doi:10.1128/aem.70.1.385-392.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz M, Gomez-Rico MF, Font R (2014) PCDD/F formation from chlorophenols by lignin and manganese peroxidases. Chemosphere 110:129–135. doi:10.1016/j.chemosphere.2014.02.029

    Article  CAS  PubMed  Google Scholar 

  • Murphy CD (2003) New frontiers in biological halogenation. J Appl Microbiol 94(4):539–548. doi:10.1046/j.1365-2672.2003.01900.x

    Article  CAS  PubMed  Google Scholar 

  • Myneni SCB (2002) Formation of stable chlorinated hydrocarbons in weathering plant material. Science 295(5557):1039–1041. doi:10.1126/science.1067153

    Article  CAS  PubMed  Google Scholar 

  • Niedan V, Schöler HF (1997) Natural formation of chlorobenzoic acids (CBA) and distinction between PCB-degraded CBA. Chemosphere 35(6):1233–1241. doi:10.1016/s0045-6535(97)00205-1

    Article  CAS  Google Scholar 

  • Niedan V, Pavasars I, Oberg G (2000) Chloroperoxidase-mediated chlorination of aromatic groups in fulvic acid. Chemosphere 41(5):779–785. doi:10.1016/s0045-6535(99)00471-3

    Article  CAS  PubMed  Google Scholar 

  • Nightingale PD, Malin G, Liss PS (1995) Production of chloroform and other low-molecular-weight halocarbons by some species of macroalgae. Limnol Oceanogr 40(4):680–689

    Article  CAS  Google Scholar 

  • Öberg GM (2003) The Biogeochemistry of Chlorine in Soil. In: Gribble G (ed) Natural production of organohalogen compounds, vol 3. Springer, Berlin, pp 43–62

    Chapter  Google Scholar 

  • Öberg G, Bastviken D (2012) Transformation of chloride to organic chlorine in terrestrial environments: variability, extent, and implications. Crit Rev Environ Sci Technol 42(23):2526–2545. doi:10.1080/10643389.2011.592753

    Article  CAS  Google Scholar 

  • Öberg LG, Rappe C (1992) Biochemical formation of PCDD/Fs from chlorophenols. Chemosphere 25(1–2):49–52. doi:10.1016/0045-6535(92)90477-9

    Article  Google Scholar 

  • Öberg G, Brunberg H, Hjelm O (1997) Production of organically-bound chlorine during degradation of birch wood by common white-rot fungi. Soil Biol Biochem 29(2):191–197. doi:10.1016/s0038-0717(96)00242-8

    Article  Google Scholar 

  • Ortiz-Bermudez P, Hirth KC, Srebotnik E, Hammel KE (2007) Chlorination of lignin by ubiquitous fungi has a likely role in global organochlorine production. Proc Natl Acad Sci USA 104(10):3895–3900. doi:10.1073/pnas.0610074104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul C, Pohnert G (2011) Production and role of volatile halogenated compounds from marine algae. Nat Prod Rep 28(2):186–195. doi:10.1039/c0np00043d

    Article  CAS  PubMed  Google Scholar 

  • Pizzigallo MDR, Ruggiero P, Crecchio C, Mininni R (1995) Manganese and iron-oxides as reactants for oxidation of chlorophenols. Soil Sci Soc Am J 59(2):444–452

    Article  CAS  Google Scholar 

  • Poch GK, Gloer JB, Shearer CA (1992) New bioactive metabolites from a fresh-water isolate of the fungus Kirschsteiniothelia sp. J Nat Prod 55(8):1093–1099. doi:10.1021/np50086a010

    Article  CAS  PubMed  Google Scholar 

  • Putschew A, Keppler F, Jekel M (2003) Differentiation of the halogen content of peat samples using ion chromatography after combustion (TX/TOX-IC). Anal Bioanal Chem 375(6):781–785. doi:10.1007/s00216-003-1797-1

    CAS  PubMed  Google Scholar 

  • Redon PO, Jolivet C, Saby NPA, Abdelouas A, Thiry Y (2013) Occurrence of natural organic chlorine in soils for different land uses. Biogeochemistry 114(1–3):413–419. doi:10.1007/s10533-012-9771-7

    Article  CAS  Google Scholar 

  • Reina RG, Leri AC, Myneni SCB (2004) ClK-edge X-ray spectroscopic investigation of enzymatic formation of organochlorines in weathering plant material. Environ Sci Technol 38(3):783–789. doi:10.1021/es0347336

    Article  CAS  PubMed  Google Scholar 

  • Rezanka T, Spizek J (2005) Griseofulvin and other biologically active, halogen containing compounds from fungi. In: UrRahman A (ed) Bioactive Natural Products, vol 32. Studies in Natural Products Chemistry. pp 471–547

    Google Scholar 

  • Rohlenova J, Gryndler M, Forczek ST, Fuksova K, Handova V, Matucha M (2009) Microbial chlorination of organic matter in forest soil: investigation using Cl-36-chloride and its methodology. Environ Sci Technol 43(10):3652–3655. doi:10.1021/es803300f

    Article  CAS  PubMed  Google Scholar 

  • Ruttimann-Johnson C, Lamar RT (1996) Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignin-degrading enzymes. Appl Environ Microbiol 62(10):3890–3893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scarratt MG, Moore RM (1999) Production of chlorinated hydrocarbons and methyl iodide by the red microalga Porphyridium purpureum. Limnol Oceanogr 44(3):703–707

    Article  CAS  Google Scholar 

  • Silk PJ, Macaulay JB (2003) Stereoselective biosynthesis of chloroarylpropane diols by the basidiomycete Bjerkandera adusta: exploring the roles of amino acids, pyruvate, glycerol and phenyl acetyl carbinol. FEMS Microbiol Lett 228(1):11–19. doi:10.1016/s0378-1097(03)00725-0

    Article  CAS  PubMed  Google Scholar 

  • Silk PJ, Lonergan GC, Arsenault TL, Boyle CD (1997) Evidence of natural organochlorine formation in peat bogs. Chemosphere 35(12):2865–2880. doi:10.1016/s0045-6535(97)00347-0

    Article  CAS  Google Scholar 

  • Silk PJ, Aubry C, Lonergan GC, Macaulay JB (2001) Chlorometabolite production by the ecologically important white rot fungus Bjerkandera adusta. Chemosphere 44(7):1603–1616. doi:10.1016/s0045-6535(00)00537-3

    Article  CAS  PubMed  Google Scholar 

  • Simmonds PG, Derwent RG, Manning AJ, O’Doherty S, Spain G (2010) Natural chloroform emissions from the blanket peat bogs in the vicinity of Mace Head, Ireland over a 14-year period. Atmos Environ 44(10):1284–1291. doi:10.1016/j.atmosenv.2009.12.027

    Article  CAS  Google Scholar 

  • Spinnler HE, de Jong E, Mauvais G, Semon E, Lequere JL (1994) Production of halogenated compounds by Bjerkandera adusta. Appl Microbiol Biotechnol 42(2–3):212–221

    CAS  Google Scholar 

  • Swarts HJ, Verhagen FJM, Field JA, Wijnberg J (1996) Novel chlorometabolites produced by Bjerkandera species. Phytochemistry 42(6):1699–1701. doi:10.1016/0031-9422(96)00191-4

    Article  CAS  Google Scholar 

  • Swarts HJ, Teunissen PJM, Verhagen FJM, Field JA, Wijnberg J (1997) Chlorinated anisyl metabolites produced by basidiomycetes. Mycol Res 101:372–374. doi:10.1017/s0953756296003036

    Article  CAS  Google Scholar 

  • Swarts HJ, Verhagen FJM, Field JA, Wijnberg J (1998) Trichlorinated phenols from Hypholoma elongatum. Phytochemistry 49(1):203–206. doi:10.1016/s0031-9422(97)01067-4

    Article  CAS  Google Scholar 

  • Takahashi A, Agatsuma T, Matsuda M, Ohta T, Nunozawa T, Endo T, Nozoe S (1992) Russuphelin-A, a new cytotoxic substance from the mushroom Russula-subnigricans hongo. Chem Pharm Bull 40(12):3185–3188

    Article  CAS  PubMed  Google Scholar 

  • Teunissen PJM, Swarts HJ, Field JA (1997) The de novo production of drosophilin A (tetrachloro-4-methoxyphenol) and drosophilin A methyl ether (tetrachloro-1,4-dimethoxybenzene) by ligninolytic basidiomycetes. Appl Microbiol Biotechnol 47(6):695–700

    Article  CAS  PubMed  Google Scholar 

  • Teuten EL, Xu L, Reddy CM (2005) Two abundant bioaccumulated halogenated compounds are natural products. Science 307(5711):917–920. doi:10.1026/science.1106882

    Article  CAS  PubMed  Google Scholar 

  • Tittlemier SA, Simon M, Jarman WM, Elliott JE, Norstrom RJ (1999) Identification of a novel C10H6N2Br 4Cl2 heterocyclic compound in seabird eggs. A bioaccumulating marine natural product? Environ Sci Technol 33(1):26–33. doi:10.1021/es980646f

    Article  CAS  Google Scholar 

  • Verhagen FJM, Swarts HJ, Kuyper TW, Wijnberg J, Field JA (1996) The ubiquity of natural adsorbable organic halogen production among basidiomycetes. Appl Microbiol Biotechnol 45(5):710–718

    Article  CAS  Google Scholar 

  • Verhagen FJM, Swarts HJ, Wijnberg J, Field JA (1998a) Biotransformation of the major fungal metabolite 3,5-dichlorop-p-anisyl alcohol under anaerobic conditions and its role in formation of bis(3,5-dichloro-4-hydroxyphenyl)methane. Appl Environ Microbiol 64(9):3225–3231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verhagen FJM, Van Assema FBJ, Boekema B, Swarts HJ, Wijnberg J, Field JA (1998b) Dynamics of organohalogen production by the ecologically important fungus Hypholoma fasciculare. FEMS Microbiol Lett 158(2):167–178. doi:10.1111/j.1574-6968.1998.tb12816.x

    Article  CAS  Google Scholar 

  • Vetter W (2006) Marine halogenated natural products of environmental relevance. In: Ware GW (ed) Reviews of environmental contamination and toxicology. Reviews of environmental contamination and toxicology. vol 188, pp 1–57. doi:10.1007/978-0-387-32964-2_1

    Google Scholar 

  • Vetter W, Scholz E, Gaus C, Muller JF, Haynes D (2001) Anthropogenic and natural organohalogen compounds in blubber of dolphins and dugongs (Dugong dugon) from northeastern Australia. Arch Environ Contam Toxicol 41(2):221–231

    Article  CAS  PubMed  Google Scholar 

  • Vetter W, Haase-Aschoff P, Rosenfelder N, Komarova T, Mueller JF (2009) Determination of halogenated natural products in passive samplers deployed along the great barrier reef, Queensland/Australia. Environ Sci Technol 43(16):6131–6137. doi:10.1021/es900928m

    Article  CAS  PubMed  Google Scholar 

  • Weissflog L, Lange CA, Pfennigsdorff A, Kotte K, Elansky N, Lisitzyna L, Putz E, Krueger G (2005) Sediments of salt lakes as a new source of volatile highly chlorinated C1/C2 hydrocarbons. Geophys Res Lett 32(1). doi:10.1029/2004gl020807

  • Wever R, van der Horst MA (2013) The role of vanadium haloperoxidases in the formation of volatile brominated compounds and their impact on the environment. Dalton Trans 42(33):11778–11786. doi:10.1039/c3dt50525a

    Article  CAS  PubMed  Google Scholar 

  • Wittsiepe J, Kullmann Y, Schrey P, Selenka F, Wilhelm M (1999) Peroxidase-catalyzed in vitro formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from chlorophenols. Toxicol Lett 106(2–3):191–200. doi:10.1016/s0378-4274(99)00066-1

    Article  CAS  PubMed  Google Scholar 

  • Wright AD, Papendorf O, Konig GM (2005) Ambigol C and 2,4-dichlorobenzoic acid, natural products produced by the terrestrial cyanobacterium Fischerella ambigua. J Nat Prod 68(3):459–461. doi:10.1021/np049640w

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Vetter W, Gribble GW, Schneekloth JS, Blank DH, Gorls H (2002) Angewandte Chemie-Int Ed 41(10):1740–1743. doi:10.1002/1521-3773(20020517)41:10<1740::aid-anie1740>3.0.co;2-7

  • Yokouchi Y, Ikeda M, Inuzuka Y, Yukawa T (2002) Strong emission of methyl chloride from tropical plants. Nature 416(6877):163–165. doi:10.1038/416163a

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Field .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Field, J.A. (2016). Natural Production of Organohalide Compounds in the Environment. In: Adrian, L., Löffler, F. (eds) Organohalide-Respiring Bacteria. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49875-0_2

Download citation

Publish with us

Policies and ethics