Evaluation of the Microbial Reductive Dehalogenation Reaction Using Compound-Specific Stable Isotope Analysis (CSIA)

  • Julian Renpenning
  • Ivonne NijenhuisEmail author


In recent decades, concepts involving compound-specific stable isotope analysis have evolved allowing the assessment of organohalide biotransformation in situ as well as evaluating complex (bio)chemical reactions. The stable isotope composition can provide information on the source of a specific chemical and changes over time or space additionally allow to assess degradation pathways and reaction mechanisms involved during (bio)transformation. This chapter provides a basic introduction into stable isotope analysis, an overview of the application of compound-specific stable isotope analysis (CSIA ) for investigation of the microbial reductive dehalogenation reaction of mainly chlorinated ethenes and summarizes recent advances and results.


Isotope Analysis Isotope Fractionation Isotope Effect Stable Isotope Analysis Reductive Dehalogenation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was funded by the Deutsche Forschungsgemeinschaft (Research Unit FOR 1530 NI 1329/1-1).


  1. Abe Y, Aravena R, Zopfi J, Shouakar-Stash O, Cox E, Roberts JD, Hunkeler D (2009) Carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride and cis-1,2-dichloroethene. Environ Sci Technol 43(1):101–107. doi: 10.1021/Es801759k PubMedCrossRefGoogle Scholar
  2. Aeppli C, Berg M, Cirpka OA, Holliger C, Schwarzenbach RP, Hofstetter TB (2009) Influence of mass-transfer limitations on carbon isotope fractionation during microbial dechlorination of trichloroethene. Environ Sci Technol 43(23):8813–8820. doi: 10.1021/es901481b PubMedCrossRefGoogle Scholar
  3. Aeppli C, Holmstrand H, Andersson P, Gustafsson O (2010) Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing. Anal Chem 82(1):420–426. doi: 10.1021/ac902445f PubMedCrossRefGoogle Scholar
  4. Armbruster W, Lehnert K, Vetter W (2006) Establishing a chromium-reactor design for measuring delta 2H values of solid polyhalogenated compounds using direct elemental analysis and stable isotope ratio mass spectrometry. Anal Bioanal Chem 384(1):237–243. doi: 10.1007/s00216-005-0160-0 PubMedCrossRefGoogle Scholar
  5. Arnold WA, Roberts AL (2000) Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ Sci Technol 34(9):1794–1805. doi: 10.1021/es990884q CrossRefGoogle Scholar
  6. Audi-Miro C, Cretnik S, Otero N, Palau J, Shouakar-Stash O, Soler A, Elsner M (2013) Cl and C isotope analysis to assess the effectiveness of chlorinated ethene degradation by zero-valent iron: evidence from dual element and product isotope values. Appl Geochem 32:175–183. doi: 10.1016/j.apgeochem.2012.08.025 CrossRefGoogle Scholar
  7. Bernstein A, Shouakar-Stash O, Ebert K, Laskov C, Hunkeler D, Jeannottat S, Sakaguchi-Soder K, Laaks J, Jochmann MA, Cretnik S, Jager J, Haderlein SB, Schmidt TC, Aravena R, Elsner M (2011) Compound-specific chlorine isotope analysis: a comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study. Anal Chem 83(20):7624–7634. doi: 10.1021/ac200516c PubMedCrossRefGoogle Scholar
  8. Bloom Y, Aravena R, Hunkeler D, Edwards E, Frape SK (2000) Carbon isotope fractionation during microbial dechlorination of trichloroethene, cis-1,2-dichloroethene, and vinyl chloride: implications for assessment of natural attenuation. Environ Sci Technol 34(13):2768–2772. doi: 10.1021/Es991179k CrossRefGoogle Scholar
  9. Bombach P, Richnow HH, Kastner M, Fischer A (2010) Current approaches for the assessment of in situ biodegradation. Appl Microbiol Biotechnol 86(3):839–852. doi: 10.1007/s00253-010-2461-2 PubMedCrossRefGoogle Scholar
  10. Bommer M, Kunze C, Fesseler J, Schubert T, Diekert G, Dobbek H (2014) Structural basis for organohalide respiration. Science 346(6208):455–458. doi: 10.1126/science.1258118 PubMedCrossRefGoogle Scholar
  11. Brand WA, Coplen TB (2012) Stable isotope deltas: tiny, yet robust signatures in nature. Isot Environ Health Stud 48(3):393–409. doi: 10.1080/10256016.2012.666977 CrossRefGoogle Scholar
  12. Brenna JT, Corso TN, Tobias HJ, Caimi RJ (1997a) High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectrom Rev 16(5):227–258. doi: 10.1002/(SICI)1098-2787(1997)16:5<227:AID-MAS1>3.0.CO;2-J PubMedCrossRefGoogle Scholar
  13. Brenna JT, Corso TN, Tobias HJ, Caimi RJ (1997b) High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectrom Rev 16(5):227–258. doi: 10.1002/(sici)1098-2787(1997)16:5<227:aid-mas1>;2-j PubMedCrossRefGoogle Scholar
  14. Chartrand MM, Waller A, Mattes TE, Elsner M, Lacrampe-Couloume G, Gossett JM, Edwards EA, Lollar BS (2005) Carbon isotopic fractionation during aerobic vinyl chloride degradation. Environ Sci Technol 39(4):1064–1070. doi: 10.1021/es0492945 PubMedCrossRefGoogle Scholar
  15. Cichocka D, Siegert M, Imfeld G, Andert J, Beck K, Diekert G, Richnow HH, Nijenhuis I (2007) Factors controlling the carbon isotope fractionation of tetra- and trichloroethene during reductive dechlorination by Sulfurospirillum ssp. and Desulfitobacterium sp. strain PCE-S. FEMS Microbiol Ecol 62(1):98–107. doi: 10.1111/j.1574-6941.2007.00367.x PubMedCrossRefGoogle Scholar
  16. Cichocka D, Imfeld G, Richnow HH, Nijenhuis I (2008) Variability in microbial carbon isotope fractionation of tetra- and trichloroethene upon reductive dechlorination. Chemosphere 71(4):639–648. doi: 10.1016/j.chemosphere.2007.11.013 PubMedCrossRefGoogle Scholar
  17. Cincinelli A, Pieri F, Zhang Y, Seed M, Jones KC (2012) Compound specific isotope analysis (CSIA) for chlorine and bromine: a review of techniques and applications to elucidate environmental sources and processes. Environ Pollut 169:112–127. doi: 10.1016/j.envpol.2012.05.006 PubMedCrossRefGoogle Scholar
  18. Clingenpeel SR, Moan JL, McGrath DM, Hungate BA, Watwood ME (2012) Stable carbon isotope fractionation in chlorinated ethene degradation by bacteria expressing three toluene oxygenases. Front Microbiol 3:63. doi: 10.3389/fmicb.2012.00063 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cook PF (1991) Enzyme mechanism from isotope effects. Crc PressGoogle Scholar
  20. Coplen TB (1994) Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure Appl Chem 66(2):273–276. doi: 10.1351/pac199466020273 CrossRefGoogle Scholar
  21. Coplen TB (1995) New IUPAC guidelines for the reporting of stable hydrogen, carbon, and oxygen isotope-ratio data. J Res Natl Inst Stan 100(3):285. doi: 10.6028/Jres.100.021 CrossRefGoogle Scholar
  22. Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom RCM 25(17):2538–2560. doi: 10.1002/Rcm.5129 PubMedCrossRefGoogle Scholar
  23. Coplen TB, Böhlke JK, De Bievre P, Ding T, Holden N, Hopple J, Krouse H, Lamberty A, Peiser H, Revesz K (2002a) Isotope-abundance variations of selected elements (IUPAC technical report). Pure Appl Chem 74(10):1987–2017CrossRefGoogle Scholar
  24. Coplen TB, Bohlke JK, De Bievre P, Ding T, Holden NE, Hopple JA, Krouse HR, Lamberty A, Peiser HS, Revesz K, Rieder SE, Rosman KJR, Roth E, Taylor PDP, Vocke RD, Xiao YK (2002b) Isotope-abundance variations of selected elements—(IUPAC technical report). Pure Appl Chem 74(10):1987–2017. doi: 10.1351/pac200274101987 CrossRefGoogle Scholar
  25. Coplen TB, Hopple J, Boehike J, Peiser H, Rieder S (2002c) Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents. US Geological SurveyGoogle Scholar
  26. Coplen TB, Brand WA, Gehre M, Groning M, Meijer HA, Toman B, Verkouteren RM, International Atomic Energy A (2006) After two decades a second anchor for the VPDB delta13C scale. Rapid communications in mass spectrometry. RCM 20 (21):3165–3166. doi: 10.1002/rcm.2727
  27. Cretnik S, Thoreson KA, Bernstein A, Ebert K, Buchner D, Laskov C, Haderlein S, Shouakar-Stash O, Kliegman S, McNeill K, Elsner M (2013) Reductive dechlorination of TCE by chemical model systems in comparison to dehalogenating bacteria: insights from dual element isotope analysis (13C/12C, 37Cl/35Cl). Environ Sci Technol 47(13):6855–6863. doi: 10.1021/es400107n PubMedGoogle Scholar
  28. Cretnik S, Bernstein A, Shouakar-Stash O, Loffler F, Elsner M (2014) Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C–Cl bond competition in trichloroethene (TCE) reductive dehalogenation. Molecules 19(5):6450–6473. doi: 10.3390/molecules19056450 PubMedCrossRefGoogle Scholar
  29. Dayan H, Abrajano T, Sturchio NC, Winsor L (1999) Carbon isotopic fractionation during reductive dehalogenation of chlorinated ethenes by metallic iron. Org Geochem 30(8A):755–763. doi: 10.1016/S0146-6380(99)00058-3 CrossRefGoogle Scholar
  30. Dybala-Defratyka A, Paneth P, Banerjee R, Truhlar DG (2007) Coupling of hydrogenic tunneling to active-site motion in the hydrogen radical transfer catalyzed by a coenzyme B12-dependent mutase. Proc Natl Acad Sci USA 104(26):10774–10779. doi: 10.1073/pnas.0702188104 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Elsner M (2010) Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J Environ Monit JEM 12(11):2005–2031. doi: 10.1039/c0em00277a PubMedCrossRefGoogle Scholar
  32. Elsner M, Hofstetter TB (2011) Current perspectives on the mechanisms of chlorohydrocarbon degradation in subsurface environments: insight from kinetics, product formation, probe molecules, and isotope fractionation. Aquat Redox Chem 1071:407–439. doi: 10.1021/bk-2011-1071.ch019 CrossRefGoogle Scholar
  33. Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol 39(18):6896–6916. doi: 10.1021/es0504587 PubMedCrossRefGoogle Scholar
  34. Elsner M, Mckelvie J, Couloume GL, Lollar BS (2007) Insight into methyl tert-butyl ether (MTBE) stable isotope fractionation from abiotic reference experiments. Environ Sci Technol 41(16):5693–5700. doi: 10.1021/Es070531o PubMedCrossRefGoogle Scholar
  35. Elsner M, Chartrand M, Vanstone N, Couloume GL, Lollar BS (2008) Identifying abiotic chlorinated ethene degradation: characteristic isotope patterns in reaction products with nanoscale zero-valent iron. Environ Sci Technol 42(16):5963–5970. doi: 10.1021/Es8001986 PubMedCrossRefGoogle Scholar
  36. Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A, Schmidt TC, Schimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403(9):2471–2491. doi: 10.1007/s00216-011-5683-y PubMedCrossRefGoogle Scholar
  37. Elvert M, Suess E, Greinert J, Whiticar MJ (2000) Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Org Geochem 31(11):1175–1187. doi: 10.1016/S0146-6380(00)00111-X CrossRefGoogle Scholar
  38. Fischer A, Herklotz I, Herrmann S, Thullner M, Weelink SA, Stams AJ, Schlomann M, Richnow HH, Vogt C (2008) Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. Environ Sci Technol 42(12):4356–4363. doi: 10.1021/es702468f PubMedCrossRefGoogle Scholar
  39. Fletcher KE, Loffler FE, Richnow HH, Nijenhuis I (2009) Stable carbon isotope fractionation of 1,2-dichloropropane during dichloroelimination by Dehalococcoides populations. Environ Sci Technol 43(18):6915–6919. doi: 10.1021/es900365x PubMedCrossRefGoogle Scholar
  40. Gehre M, Strauch G (2003) High-temperature elemental analysis and pyrolysis techniques for stable isotope analysis. Rapid Commun Mass Spectrom RCM 17(13):1497–1503. doi: 10.1002/rcm.1076 PubMedCrossRefGoogle Scholar
  41. Gehre M, Renpenning J, Gilevska T, Qi H, Coplen TB, Meijer HA, Brand WA, Schimmelmann A (2015) On-line hydrogen-isotope measurements of organic samples using elemental chromium: an extension for high temperature elemental-analyzer techniques. Anal Chem 87(10):5198–5205. doi: 10.1021/acs.analchem.5b00085 PubMedCrossRefGoogle Scholar
  42. Glod G, Angst W, Holliger C, Schwarzenbach RP (1997) Corrinoid-mediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: reaction kinetics and reaction mechanisms. Environ Sci Technol 31(1):253–260. doi: 10.1021/Es9603867 CrossRefGoogle Scholar
  43. Godin JP, McCullagh JS (2011) Review: current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS). Rapid Commun Mass Spectrom RCM 25(20):3019–3028. doi: 10.1002/rcm.5167 PubMedCrossRefGoogle Scholar
  44. Hitzfeld KL, Gehre M, Richnow HH (2011) A novel online approach to the determination of isotopic ratios for organically bound chlorine, bromine and sulphur. Rapid Commun Mass Spectrom RCM 25(20):3114–3122. doi: 10.1002/rcm.5203 PubMedCrossRefGoogle Scholar
  45. Hoefs J (1987) Stable isotope geochemistry, vol 116. SpringerGoogle Scholar
  46. Hoefs J (2008) Stable isotope geochemistry. SpringerGoogle Scholar
  47. Holmstrand H, Andersson P, Gustafsson O (2004) Chlorine isotope analysis of submicromole organochlorine samples by sealed tube combustion and thermal ionization mass spectrometry. Anal Chem 76(8):2336–2342. doi: 10.1021/ac0354802 PubMedCrossRefGoogle Scholar
  48. Holt BD, Sturchio NC, Abrajano TA, Heraty LJ (1997) Conversion of chlorinated volatile organic compounds to carbon dioxide and methyl chloride for isotopic analysis of carbon and chlorine. Anal Chem 69(14):2727–2733. doi: 10.1021/Ac961096b CrossRefGoogle Scholar
  49. Hrapovic L, Sleep BE, Major DJ, Hood ED (2005) Laboratory study of treatment of trichloroethene by chemical oxidation followed by bioremediation. Environ Sci Technol 39(8):2888–2897. doi: 10.1021/es049017y PubMedCrossRefGoogle Scholar
  50. Hunkeler D, Aravena R, Butler BJ (1999) Monitoring microbial dechlorination of tetrachloroethene (PCE) in groundwater using compound-specific stable carbon isotope ratios: microcosm and field studies. Environ Sci Technol 33(16):2733–2738. doi: 10.1021/Es981282u CrossRefGoogle Scholar
  51. Hunkeler D, Abe Y, Broholm MM, Jeannottat S, Westergaard C, Jacobsen CS, Aravena R, Bjerg PL (2011) Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon-chlorine isotope analysis and quantitative PCR. J Contam Hydrol 119(1–4):69–79. doi: 10.1016/j.jconhyd.2010.09.009 PubMedCrossRefGoogle Scholar
  52. Huskey W (1991) Origins and interpretations of heavy-atom isotope effects. Enzyme Mech Isot Eff 37–72Google Scholar
  53. Imfeld G, Aragones CE, Fetzer I, Meszaros E, Zeiger S, Nijenhuis I, Nikolausz M, Delerce S, Richnow HH (2010) Characterization of microbial communities in the aqueous phase of a constructed model wetland treating 1,2-dichloroethene-contaminated groundwater. FEMS Microbiol Ecol 72(1):74–88. doi: 10.1111/j.1574-6941.2009.00825.x PubMedCrossRefGoogle Scholar
  54. Jin B, Laskov C, Rolle M, Haderlein SB (2011) Chlorine isotope analysis of organic contaminants using GC-qMS: method optimization and comparison of different evaluation schemes. Environ Sci Technol 45(12):5279–5286. doi: 10.1021/es200749d PubMedCrossRefGoogle Scholar
  55. John M, Schmitz RP, Westermann M, Richter W, Diekert G (2006) Growth substrate dependent localization of tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans. Arch Microbiol 186(2):99–106. doi: 10.1007/s00203-006-0125-5 PubMedCrossRefGoogle Scholar
  56. Jouzel J, Lorius C, Petit JR, Genthon C, Barkov NI, Kotlyakov VM, Petrov VM (1987) Vostok ice core—a continuous isotope temperature record over the last climatic cycle (160,000 Years). Nature 329(6138):403–408. doi: 10.1038/329403a0 CrossRefGoogle Scholar
  57. Kampara M, Thullner M, Richnow HH, Harms H, Wick LY (2008) Impact of bioavailability restrictions on microbially induced stable isotope fractionation. 2. Experimental evidence. Environ Sci Technol 42(17):6552–6558. doi: 10.1021/es702781x PubMedCrossRefGoogle Scholar
  58. Kampara M, Thullner M, Harms H, Wick LY (2009) Impact of cell density on microbially induced stable isotope fractionation. Appl Microbiol Biotechnol 81(5):977–985. doi: 10.1007/s00253-008-1755-0 PubMedCrossRefGoogle Scholar
  59. Kaufmann R, Long A, Bentley H, Davis S (1984) Natural chlorine isotope variations. Nature 309(5966):338–340. doi: 10.1038/309338a0 CrossRefGoogle Scholar
  60. Kaufmann RS, Long A, Campbell DJ (1988) Chlorine isotope distribution in formation waters, texas and Louisiana: GEOLOGIC NOTE. AAPG Bull 72(7):839–844Google Scholar
  61. Keller S, Ruetz M, Kunze C, Krautler B, Diekert G, Schubert T (2014) Exogenous 5,6-dimethylbenzimidazole caused production of a non-functional tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans. Environ Microbiol 16(11):3361–3369. doi: 10.1111/1462-2920.12268 PubMedCrossRefGoogle Scholar
  62. Kräutler B, Fieber W, Ostermann S, Fasching M, Ongania K-H, Gruber K, Kratky C, Mikl C, Siebert A, Diekert G (2003) The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans is Norpseudo-B12, a new type of a natural corrinoid. Helv Chim Acta 86(11):3698–3716. doi: 10.1002/hlca.200390313 CrossRefGoogle Scholar
  63. Krone UE, Thauer RK, Hogenkamp HPC (1989) Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28(11):4908–4914. doi: 10.1021/Bi00437a057 CrossRefGoogle Scholar
  64. Krummen M, Hilkert AW, Juchelka D, Duhr A, Schluter HJ, Pesch R (2004) A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom RCM 18(19):2260–2266. doi: 10.1002/rcm.1620 PubMedCrossRefGoogle Scholar
  65. Kuder T, Philp P (2013) Demonstration of compound-specific isotope analysis of hydrogen isotope ratios in chlorinated ethenes. Environ Sci Technol 47(3):1461–1467. doi: 10.1021/es303476v PubMedCrossRefGoogle Scholar
  66. Kuder T, Wilson JT, Kaiser P, Kolhatkar R, Philp P, Allen J (2005) Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: microcosm and field evidence. Environ Sci Technol 39(1):213–220. doi: 10.1021/es040420e PubMedCrossRefGoogle Scholar
  67. Kuder T, van Breukelen BM, Vanderford M, Philp P (2013) 3D-CSIA: carbon, chlorine, and hydrogen isotope fractionation in transformation of TCE to ethene by a Dehalococcoides culture. Environ Sci Technol 47(17):9668–9677. doi: 10.1021/es400463p PubMedCrossRefGoogle Scholar
  68. Lebedev AT (2013) Environmental mass spectrometry. Ann Rev Anal Chem 6:163–189. doi: 10.1146/annurev-anchem-062012-092604 CrossRefGoogle Scholar
  69. Lee PK, Conrad ME, Alvarez-Cohen L (2007) Stable carbon isotope fractionation of chloroethenes by dehalorespiring isolates. Environ Sci Technol 41(12):4277–4285. doi: 10.1021/es062763d PubMedCrossRefGoogle Scholar
  70. Magenheim AJ, Spivack AJ, Michael PJ, Gieskes JM (1995) Chlorine stable isotope composition of the oceanic crust: implications for Earth’s distribution of chlorine. Earth Planet Sci Lett 131(3):427–432CrossRefGoogle Scholar
  71. Mancini SA, Hirschorn SK, Elsner M, Lacrampe-Couloume G, Sleep BE, Edwards EA, Lollar BS (2006) Effects of trace element concentration on enzyme controlled stable isotope fractionation during aerobic biodegradation of toluene. Environ Sci Technol 40(24):7675–7681. doi: 10.1021/es061363n PubMedCrossRefGoogle Scholar
  72. Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental-determination of nitrogen kinetic isotope fractionation—some principles—illustration for the denitrification and nitrification processes. Plant Soil 62(3):413–430. doi: 10.1007/Bf02374138 CrossRefGoogle Scholar
  73. Marco-Urrea E, Nijenhuis I, Adrian L (2011) Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. Environ Sci Technol 45 (4):1555–1562. doi: 10.1021/es1023459
  74. Mattes TE, Alexander AK, Coleman NV (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 34(4):445–475. doi: 10.1111/j.1574-6976.2010.00210.x PubMedCrossRefGoogle Scholar
  75. Maymo-Gatell X, Chien Y, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276(5318):1568. doi: 10.1126/science.276.5318.1568 PubMedCrossRefGoogle Scholar
  76. Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. J Contam Hydrol 75(3–4):215–255. doi: 10.1016/j.jconhyd.2004.06.003 PubMedCrossRefGoogle Scholar
  77. Neumann A, Scholz-Muramatsu H, Diekert G (1994) Tetrachloroethene metabolism of Dehalospirillum multivorans. Arch Microbiol 162(4):295–301. doi: 10.1007/BF00301854 PubMedCrossRefGoogle Scholar
  78. Neumann A, Siebert A, Trescher T, Reinhardt S, Wohlfarth G, Diekert G (2002) Tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans: substrate specificity of the native enzyme and its corrinoid cofactor. Arch Microbiol 177(5):420–426. doi: 10.1007/s00203-002-0409-3 PubMedCrossRefGoogle Scholar
  79. Nijenhuis I, Andert J, Beck K, Kastner M, Diekert G, Richnow HH (2005) Stable isotope fractionation of tetrachloroethene during reductive dechlorination by Sulfurospirillum multivorans and Desulfitobacterium sp. strain PCE-S and abiotic reactions with cyanocobalamin. Appl Environ Microbiol 71(7):3413–3419. doi: 10.1128/AEM.71.7.3413-3419.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Northrop DB (1975) Steady-state analysis of kinetic isotope effects in enzymic reactions. Biochemistry 14(12):2644–2651. doi: 10.1021/bi00683a013 PubMedCrossRefGoogle Scholar
  81. Northrop DB (1981) The expression of isotope effects on enzyme-catalyzed reactions. Annu Rev Biochem 50:103–131. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  82. Palau J, Cretnik S, Shouakar-Stash O, Hoche M, Elsner M, Hunkeler D (2014) C and Cl isotope fractionation of 1,2-dichloroethane displays unique delta(1)(3)C/delta(3)(7)Cl patterns for pathway identification and reveals surprising C–Cl bond involvement in microbial oxidation. Environ Sci Technol 48(16):9430–9437. doi: 10.1021/es5031917 PubMedCrossRefGoogle Scholar
  83. Paneth P (2003) Chlorine kinetic isotope effects on enzymatic dehalogenations. Acc Chem Res 36(2):120–126. doi: 10.1021/ar010101h PubMedCrossRefGoogle Scholar
  84. Ransom B, Spivack AJ, Kastner M (1995) Stable Cl isotopes in subduction-zone pore waters—implications for fluid-rock reactions and the cycling of chlorine. Geology 23(8):715–718. doi: 10.1130/0091-7613(1995)023<0715:Sciisz>2.3.Co;2 CrossRefGoogle Scholar
  85. Renpenning J, Keller S, Cretnik S, Shouakar-Stash O, Elsner M, Schubert T, Nijenhuis I (2014) Combined C and Cl isotope effects indicate differences between corrinoids and enzyme (Sulfurospirillum multivorans PceA) in reductive dehalogenation of tetrachloroethene, but not trichloroethene. Environ Sci Technol 48(20):11837–11845. doi: 10.1021/es503306g PubMedCrossRefGoogle Scholar
  86. Renpenning J, Hitzfeld KL, Gilevska T, Nijenhuis I, Gehre M, Richnow HH (2015a) Development and validation of an universal interface for compound-specific stable isotope analysis of chlorine (37Cl/35Cl) by GC-high-temperature conversion (HTC)-MS/IRMS. Anal Chem 87(5):2832–2839. doi: 10.1021/ac504232u PubMedCrossRefGoogle Scholar
  87. Renpenning J, Rapp I, Nijenhuis I (2015b) Substrate hydrophobicity and cell composition influence the extent of rate limitation and masking of isotope fractionation during microbial reductive dehalogenation of chlorinated ethenes. Environ Sci Technol 49(7):4293–4301. doi: 10.1021/es506108j PubMedCrossRefGoogle Scholar
  88. Renpenning J, Kummel S, Hitzfeld KL, Schimmelmann A, Gehre M (2015c) Compound-specific hydrogen isotope analysis of heteroatom-bearing compounds via gas chromatography-chromium-based high-temperature conversion (Cr/HTC)-isotope ratio mass spectrometry. Anal Chem 87 (18):9443–9450. doi: 10.1021/acs.analchem.5b02475
  89. Sakaguchi-Soder K, Jager J, Grund H, Matthaus F, Schuth C (2007) Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis. Rapid Commun Mass Spectrom RCM 21(18):3077–3084. doi: 10.1002/rcm.3170 PubMedCrossRefGoogle Scholar
  90. Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378(2):283–300. doi: 10.1007/s00216-003-2350-y PubMedCrossRefGoogle Scholar
  91. Schmidt KR, Augenstein T, Heidinger M, Ertl S, Tiehm A (2010) Aerobic biodegradation of cis-1,2-dichloroethene as sole carbon source: stable carbon isotope fractionation and growth characteristics. Chemosphere 78(5):527–532. doi: 10.1016/j.chemosphere.2009.11.033 PubMedCrossRefGoogle Scholar
  92. Schmidt M, Lege S, Nijenhuis I (2014) Comparison of 1,2-dichloroethane, dichloroethene and vinyl chloride carbon stable isotope fractionation during dechlorination by two Dehalococcoides strains. Water Res 52:146–154. doi: 10.1016/j.watres.2013.12.042 PubMedCrossRefGoogle Scholar
  93. Scholz-Muramatsu H, Neumann A, Meßmer M, Moore E, Diekert G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163(1):48–56. doi: 10.1007/BF00262203 CrossRefGoogle Scholar
  94. Sessions AL (2006) Isotope-ratio detection for gas chromatography. J Sep Sci 29(12):1946–1961. doi: 10.1002/jssc.200600002 PubMedCrossRefGoogle Scholar
  95. Sherwood Lollar B, Slater G, Ahad J, Sleep B, Spivack J, Brennan M, MacKenzie P (1999) Contrasting carbon isotope fractionation during biodegradation of trichloroethylene and toluene: implications for intrinsic bioremediation. Org Geochem 30(8):813–820. doi: 10.1016/S0146-6380(99)00064-9 CrossRefGoogle Scholar
  96. Sherwood Lollar B, Slater G, Sleep B, Witt M, Klecka G, Harkness M, Spivack J (2001) Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at area 6, dover air force base. Environ Sci Technol 35(2):261–269. doi: 10.1021/es001227x PubMedCrossRefGoogle Scholar
  97. Sherwood Lollar B, Hirschorn S, Mundle SO, Grostern A, Edwards EA, Lacrampe-Couloume G (2010) Insights into enzyme kinetics of chloroethane biodegradation using compound specific stable isotopes. Environ Sci Technol 44(19):7498–7503. doi: 10.1021/es101330r CrossRefGoogle Scholar
  98. Shouakar-Stash O, Drimmie RJ (2013) Online methodology for determining compound-specific hydrogen stable isotope ratios of trichloroethene and 1,2-cis-dichloroethene by continuous-flow isotope ratio mass spectrometry. Rapid Commun Mass Spectrom RCM 27(12):1335–1344. doi: 10.1002/rcm.6578 PubMedCrossRefGoogle Scholar
  99. Shouakar-Stash O, Drimmie RJ, Zhang M, Frape SK (2006) Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS. Appl Geochem 21(5):766–781. doi: 10.1016/j.apgeochem.2006.02.006 CrossRefGoogle Scholar
  100. Shouakar-Stash O, Stotler RL, Frape SK, Illman WA (2009) The effect of sorption on chlorine stable isotopes of TCE. Geochim Cosmochim Acta 73(13):A1217–A1217Google Scholar
  101. Siebert A, Neumann A, Schubert T, Diekert G (2002) A non-dechlorinating strain of Dehalospirillum multivorans: evidence for a key role of the corrinoid cofactor in the synthesis of an active tetrachloroethene dehalogenase. Arch Microbiol 178(6):443–449. doi: 10.1007/s00203-002-0473-8 PubMedCrossRefGoogle Scholar
  102. Slater GF, Lollar BS, Sleep BE, Edwards EA (2001) Variability in carbon isotopic fractionation during biodegradation of chlorinated ethenes: implications for field applications. Environ Sci Technol 35(5):901–907. doi: 10.1021/es001583f PubMedCrossRefGoogle Scholar
  103. Slater GF, Lollar BS, Lesage S, Brown S (2003) Carbon isotope fractionation of PCE and TCE during dechlorination by vitamin B12. Ground Water Monit Rem 23(4):59–67. doi: 10.1111/j.1745-6592.2003.tb00695.x CrossRefGoogle Scholar
  104. Staal M, Thar R, Kuhl M, van Loosdrecht MCM, Wolf G, de Brouwer JFC, Rijstenbil JW (2007) Different carbon isotope fractionation patterns during the development of phototrophic freshwater and marine biofilms. Biogeosciences 4(4):613–626. doi: 10.5194/bg-4-613-2007 CrossRefGoogle Scholar
  105. Stupperich E, Eisinger HJ, Schurr S (1990) Corrinoids in anaerobic-bacteria. FEMS Microbiol Lett 87(3–4):355–359. doi: 10.1111/j.1574-6968.1990.tb04936.x CrossRefGoogle Scholar
  106. Tanaka N, Rye DM (1991) Chlorine in the stratosphere. Nature 353(6346):707. doi: 10.1038/353707a0 CrossRefGoogle Scholar
  107. Templeton AS, Chu KH, Alvarez-Cohen L, Conrad ME (2006) Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria. Geochim Cosmochim Acta 70(7):1739–1752. doi: 10.1016/j.gca.2005.12.002 CrossRefGoogle Scholar
  108. Thiemens MH (2006) History and applications of mass-independent isotope effects. Annu Rev Earth Planet Sci 34(1):217–262. doi: 10.1146/ CrossRefGoogle Scholar
  109. Thullner M, Kampara M, Richnow HH, Harms H, Wick LY (2008) Impact of bioavailability restrictions on microbially induced stable isotope fractionation. 1. Theoretical calculation. Environ Sci Technol 42(17):6544–6551. doi: 10.1021/es702782c PubMedCrossRefGoogle Scholar
  110. Thullner M, Fischer A, Richnow HH, Wick LY (2013) Influence of mass transfer on stable isotope fractionation. Appl Microbiol Biotechnol 97(2):441–452. doi: 10.1007/s00253-012-4537-7 PubMedCrossRefGoogle Scholar
  111. Tiehm A, Schmidt KR (2011) Sequential anaerobic/aerobic biodegradation of chloroethenes—aspects of field application. Curr Opin Biotechnol 22(3):415–421. doi: 10.1016/j.copbio.2011.02.003 PubMedCrossRefGoogle Scholar
  112. Tiehm A, Schmidt KR, Pfeifer B, Heidinger M, Ertl S (2008) Growth kinetics and stable carbon isotope fractionation during aerobic degradation of cis-1,2-dichloroethene and vinyl chloride. Water Res 42(10–11):2431–2438. doi: 10.1016/j.watres.2008.01.029 PubMedCrossRefGoogle Scholar
  113. Tsitonaki A, Petri B, Crimi M, Mosbaek H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol 40(1):55–91. doi: 10.1080/10643380802039303 CrossRefGoogle Scholar
  114. Wiegert C, Aeppli C, Knowles T, Holmstrand H, Evershed R, Pancost RD, Machackova J, Gustafsson O (2012) Dual carbon-chlorine stable isotope investigation of sources and fate of chlorinated ethenes in contaminated groundwater. Environ Sci Technol 46(20):10918–10925. doi: 10.1021/es3016843 PubMedCrossRefGoogle Scholar
  115. Wiegert C, Mandalakis M, Knowles T, Polymenakou PN, Aeppli C, Machackova J, Holmstrand H, Evershed RP, Pancost RD, Gustafsson O (2013) Carbon and chlorine isotope fractionation during microbial degradation of tetra- and trichloroethene. Environ Sci Technol 47(12):6449–6456. doi: 10.1021/es305236y PubMedGoogle Scholar
  116. Yan J, Ritalahti KM, Wagner DD, Loffler FE (2012) Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains. Appl Environ Microbiol 78(18):6630–6636. doi: 10.1128/AEM.01535-12 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zhang Y, Qi SH (2012) Techniques of stable chlorine isotope analysis and relevant applications in research of organochlorine pollutants. Prog Chem 24(12):2384–2390Google Scholar
  118. Zwank L, Berg M, Elsner M, Schmidt TC, Schwarzenbach RP, Haderlein SB (2005) New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: application to groundwater contamination by MTBE. Environ Sci Technol 39(4):1018–1029. doi: 10.1021/es049650j PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department Isotope BiogeochemistryHelmholtz Centre for Environmental Research—UFZLeipzigGermany

Personalised recommendations