Skip to main content

Schrödinger Theory from the ‘Newtonian’ Perspective of ‘Classical’ Fields Derived from Quantal Sources

  • Chapter
  • First Online:

Abstract

Schrödinger theory of the electronic structure of matter—N electrons in the presence of an external time-dependent field—is described from the perspective of the individual electron. The corresponding equation of motion is expressed via the ‘Quantal Newtonian’ second law, the first law being a description of the stationary state case. This description of Schrödinger theory is ‘Newtonian’ in that it is in terms of ‘classical’ fields which pervade space, and whose sources are quantum-mechanical expectations of Hermitian operators taken with respect to the system wave function. In addition to the external field, each electron experiences an internal field, the components of which are representative of correlations due to the Pauli Exclusion Principle and Coulomb repulsion, the kinetic effects, and the density. The resulting motion of the electron is described by a response field. Ehrenfest’s theorem is derived by showing the internal field vanishes on summing over all the electrons. The ‘Newtonian’ perspective is then explicated for both a ground and excited state of an exactly solvable model. Various facets of quantum mechanics such as the Integral Virial Theorem, the Harmonic Potential Theorem, the quantum-mechanical ‘hydrodynamical’ equations in terms of fields, coalescence constraints, and the asymptotic structure of the wave function and density are derived. The equivalence of the ‘Quantal Newtonian’ second law and the Euler equation of Quantum Fluid Dynamics is proved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Schrödinger, Ann. Physik 79, 361, 489 (1925); 80, 437 (1926); 81, 109 (1926)

    Google Scholar 

  2. V. Sahni, J. Mol. Struc. (Theochem) 501, 91 (2000)

    Article  Google Scholar 

  3. M. Born, J.R. Oppenheimer, Ann. Physik 84, 457 (1927); V.F. Brattsev, Dokl. Acad. Nauk SSSR 160, 570 (1965) English transl: Soviet Physics–Doklady 10, 44 (1965); S.T. Epstein, J. Chem. Phys. 44 836 (1966); Errata 44, 4062 (1966)

    Google Scholar 

  4. V. Sahni, J.B. Krieger, Phys. Rev. A 11, 409 (1975)

    Article  ADS  Google Scholar 

  5. V. Sahni, J.B. Krieger, J. Gruenebaum, Phys. Rev. A 12, 768 (1975)

    Article  ADS  Google Scholar 

  6. Z. Qian, V. Sahni, Phys. Lett. A 247, 303 (1998)

    Article  ADS  Google Scholar 

  7. Z. Qian, V. Sahni, Int. J. Quantum Chem. 78, 341 (2000)

    Article  Google Scholar 

  8. Z. Qian, V. Sahni, Phys. Rev. A 63, 042508 (2001)

    Google Scholar 

  9. L.P. Kadanoff, G. Baym, Statistical Mechanics (W.A. Benjamin, New York, 1962); Sect. 10.3

    Google Scholar 

  10. A. Messiah, Quantum Mechanics, vol. I (North Holland, Amsterdam, 1966)

    MATH  Google Scholar 

  11. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  12. P. Ehrenfest, Z. Physik 45, 455 (1927)

    Article  ADS  Google Scholar 

  13. J.F. Dobson, Phys. Rev. Lett. 73, 2244 (1994)

    Article  ADS  Google Scholar 

  14. M. Taut, Phys. Rev. A 48, 3561 (1993)

    Article  ADS  Google Scholar 

  15. S. Kais, D.R. Herschbach, R.D. Levine, J. Chem. Phys. 91, 7791 (1989)

    Article  ADS  Google Scholar 

  16. N.R. Kestner, O. Sinanoglu, Phys. Rev. 128, 2687 (1962)

    Article  ADS  Google Scholar 

  17. X.-Y. Pan, V. Sahni, Int. J. Quantum Chem. 95, 387 (2003)

    Article  Google Scholar 

  18. J.P. Elliot, T.H.R. Skyrme, Proc. R. Soc. London A232, 561 (1955)

    Article  ADS  Google Scholar 

  19. Y.Q. Li, X.-Y. Pan, V. Sahni, J. Chem. Phys. 139, 114301 (2013)

    Article  ADS  Google Scholar 

  20. R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  21. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw Hill, New York, 1965)

    MATH  Google Scholar 

  22. J.W. Chen, T. Yang, X.-Y. Pan, Chin. Phys. Lett. 30, 020303 (2013)

    Article  ADS  Google Scholar 

  23. V. Sahni, Phys. Rev. A 55, 1846 (1997)

    Article  ADS  Google Scholar 

  24. V. Sahni, Top. Curr. Chem. 182, 1 (1996)

    Article  Google Scholar 

  25. V. Sahni, L. Massa, R. Singh, M. Slamet, Phys. Rev. Lett. 87, 113002 (2201)

    Google Scholar 

  26. A. Holas, N.H. March, Phys. Rev. A 51, 2040 (1995)

    Article  ADS  Google Scholar 

  27. T. Kato, Commun. Pure Appl. Math. 10, 151 (1957)

    Article  Google Scholar 

  28. E. Steiner, J. Chem. Phys. 39, 2365 (1963)

    Article  ADS  Google Scholar 

  29. W.A. Bingel, Z. Naturforsch. 18a, 1249 (1963)

    Google Scholar 

  30. R.T. Pack, W.B. Brown, J. Chem. Phys. 45, 556 (1966)

    Article  ADS  Google Scholar 

  31. W.A. Bingel, Theoret. Chim. Acta. (Berl) 8, 54 (1967)

    Article  Google Scholar 

  32. X.-Y. Pan, V. Sahni, J. Chem. Phys. 119, 7083 (2003)

    Article  ADS  Google Scholar 

  33. X.-Y. Pan, V. Sahni, Phys. Rev. A 67, 012 501 (2003)

    Google Scholar 

  34. Z. Qian, V. Sahni, Int. J. Quantum Chem. 79, 205 (2000)

    Article  Google Scholar 

  35. Z. Qian, V. Sahni, Phys. Rev. A 75, 1 (2007)

    Google Scholar 

  36. J. Katriel, E.R. Davidson, Proc. Natl. Acad. Sci. USA 77, 4403 (1980)

    Article  ADS  Google Scholar 

  37. Z. Qian, V. Sahni, Int. J. Quantum Chem. 70, 671 (1998)

    Article  Google Scholar 

  38. M. Ernzerhof, K. Burke, J.P. Perdew, J. Chem. Phys. 105, 2798 (1998)

    Article  ADS  Google Scholar 

  39. Z. Qian, V. Sahni, Phys. Rev. A 57, 2527 (1998)

    Article  ADS  Google Scholar 

  40. M. Slamet, V. Sahni, Int. J. Quantum Chem. 85, 436 (2001)

    Article  Google Scholar 

  41. D. Achan, L. Massa, V. Sahni, Phys. Rev. A 90, 022502 (2014)

    Article  ADS  Google Scholar 

  42. S. Fraga, G. Malli, Many–Electron Systems: Properties and Interactions (W. B Saunders, 1968)

    Google Scholar 

  43. E. Madelung, Z. Phys. 40, 332 (1926)

    Google Scholar 

  44. H. Fröhlich, Physica (Amsterdam) 37, 215 (1967)

    Article  ADS  Google Scholar 

  45. B.M. Deb, S.K. Ghosh, in Single Particle Density in Physics and Chemistry, ed. by N.H. March, B.M. Deb (Academic, New York, 1987)

    Google Scholar 

  46. M.K. Harbola, Phys. Rev. A 58, 1779 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viraht Sahni .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sahni, V. (2016). Schrödinger Theory from the ‘Newtonian’ Perspective of ‘Classical’ Fields Derived from Quantal Sources. In: Quantal Density Functional Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49842-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49842-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49840-8

  • Online ISBN: 978-3-662-49842-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics