Advertisement

Opening Up Data Analysis for Medical Health Services: Data Integration and Analysis in Cancer Registries with CARESS

  • David Korfkamp
  • Stefan GudenkaufEmail author
  • Martin Rohde
  • Eunice Sirri
  • Joachim Kieschke
  • Kolja Blohm
  • Alexander Beck
  • Alexandr Puchkovskiy
  • H.-Jürgen Appelrath
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9670)

Abstract

Dealing with cancer is one of the big challenges of the German healthcare system. Todays efforts regarding the analysis of cancer data incorporate detection of spatial clusters as well as complex health services research and quality assurance. Recently, guidelines for a unified evaluation of German cancer data were developed which demand the execution of comparative survival analyses [1].

In this paper, we present how the CARLOS Epidemiological and Statistical Data Exploration System (CARESS), a sophisticated data warehouse system that is used by epidemiological cancer registries (ECR) in several German federal states, opens up survival analysis for a wider audience. We also discuss several performance optimizations for survival estimation, and illustrate the feasibility of our approach. Moreover we present the CARLOS Record Linkage System CARELIS, a companion tool to CARESS that enables matching new data against already existent disease reports in the ECR under consideration of potential cross references.

Keywords

Data analytics Data integration Cancer registries Cancer survival analysis CARESS Record linkage CARELIS periodR 

References

  1. 1.
    Kriterien zur Frderung klinischer Krebsregister des GKV-Spitzenverbandes of 2013, GKV-Spitzenverband, 20 December 2012. GermanGoogle Scholar
  2. 2.
    Nennecke, A., Brenner, H., Eberle, A., Geiss, K., Holleczek, B., Kieschke, J., Kraywinkel, K.: Cancer survival analysis in Germany – heading towards representative and comparable findings. Gesundheitswesen 72, 692–699 (2010). GermanCrossRefGoogle Scholar
  3. 3.
    Robert Koch-Institut und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. (eds.) Krebs in Deutschland 2007/2008. Berlin (2012). GermanGoogle Scholar
  4. 4.
    Gesetz über Krebsregister (Krebsregistergesetz – KRG) of 1994, BGBl. I pp. 3351–3355, 4 November 1994. GermanGoogle Scholar
  5. 5.
    Hentschel, S., Katalinic, A. (eds.): Das Manual der epidemiologischen Krebsregistrierung. Zuckerschwerdt Verlag, München (2008). GermanGoogle Scholar
  6. 6.
    Gesetz zur Weiterentwicklung der Krebsfrüherkennung und zur Qualitätssicherung durch klinische Krebsregister (Krebsfrüherkennungs- und -registergesetz KFRG) of 2013, BGBl. I pp. 617–623, 3 April 2013. GermanGoogle Scholar
  7. 7.
    Bauer, A., Günzel, H.: Data Warehouse Systeme, 3rd edn. dpunkt.verlag, Heidelberg (2009). GermanGoogle Scholar
  8. 8.
    Kleinbaum, D.G., Klein, M.: Survival Analysis, 3rd edn. Springer, New York (2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    Wietek, F.: Spatial statistics for cancer epidemiology - the Cancer Registry’s Epidemiological and Statistical Data Exploration System (CARESS). In: Fehr, R., Berger, J., Ranft, U. (eds.) Environmental Health Surveillance. Fortschritte in der Umweltmedizin, pp. 157–171. ecomed-Verlag, Landsberg (1999)Google Scholar
  10. 10.
    Kamp, V., Sitzmann, L., Wietek, F: A spatial data cube concept to support data analysis in environmental epidemiology. In: Proceedings of the 9th International Conference on Scientific and Statistical Database Management, Olympia, WA, 11–13 August 1997. IEEE (1997)Google Scholar
  11. 11.
    Brumfield, B., Cox, G., Hill, D., Noyes, B., Puleo, M., Shifflet, K.: Developer’s Guide to Microsoft Prism 4: Building Modulare MVVM Applications with Windows Presentation Foundation and Microsoft Silverlight. Microsoft Press, Redmond (2010)Google Scholar
  12. 12.
    Altman, D.G., Bland, J.M.: Time to event (survival) data. Br. Med. J. 317, 468–469 (1998)CrossRefGoogle Scholar
  13. 13.
    Holleczek, B., Gondos, A., Brenner, H.: periodR - an R package to calculate long-term cancer survival estimates using period analysis. Methods Inf. Med. 48, 123–128 (2009)Google Scholar
  14. 14.
    Brenner, H., Söderman, B., Hakulinen, T.: Use of period analysis for providing more up-to-date estimates of long-term survival rates: empirical evaluation among 370 000 cancer patients in Finland. Int. J. Epidemiol. 31, 456–462 (2002)CrossRefGoogle Scholar
  15. 15.
    Talbäck, M., Stenbeck, M., Rosn, M.: Up-to-date long-term survival of cancer patients: an evaluation of period analysis on Swedish Cancer Registry data. Eur. J. Cancer 40, 1361–1372 (2004)CrossRefGoogle Scholar
  16. 16.
    Ellison, L.F.: An empirical evaluation of period survival analysis using data from the Canadian Cancer Registry. Ann. Epidemiol. 16, 191–196 (2006)CrossRefGoogle Scholar
  17. 17.
    Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance evaluation. In: Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems and Applications, vol. 42(10), p. 5776 (2007)Google Scholar
  18. 18.
    Registerstelle des Epidemiologischen Krebsregisters Niedersachsen (ed.) Krebs in Niedersachsen 2010. Oldenburg, p. 117 (2012). GermanGoogle Scholar
  19. 19.
    Gesetz über das Epidemiologische Krebsregister Niedersachsen (GEKN) of 2012, Nds. GVBl. Nr. 31/2012, 13 December 2012. GermanGoogle Scholar
  20. 20.
    Lai, X., Massey, J.L.: A proposal for a new block encryption standard. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer, Heidelberg (1991)Google Scholar
  21. 21.
    Brenner, H., Schmidtmann, I., Stegmaier, C.: Effects of record linkage errors on registry-based follow-up studies. Stat. Med. 16, 2633–2643 (1997)CrossRefGoogle Scholar
  22. 22.
    Hinrichs, H.: Abschlußbericht des Projektes “Bundesweite Einfhrung eines einheitlichen Record Linkage Verfahrens in den Krebsregistern der Bundeslnder nach dem KRG” (1999). http://www.krebsregister-niedersachsen.de/dateien/veroeffentlichungen/Reports/UNICON/unicon.pdf. German
  23. 23.
    Felligi, I.P., Sunter, A.B.: A theory for record linkage. Am. Stat. Assoc. J. 64, 1183–1220 (1969)CrossRefGoogle Scholar
  24. 24.
    Bachteler, T., Reicher, J.: TDGen: A Test Data Generator for Evaluating Record Linkage Methods. German Record Linkage Center, WP-GRLC-2012-01 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • David Korfkamp
    • 1
    • 2
  • Stefan Gudenkauf
    • 1
    • 2
    Email author
  • Martin Rohde
    • 1
    • 2
  • Eunice Sirri
    • 1
    • 2
  • Joachim Kieschke
    • 1
    • 2
  • Kolja Blohm
    • 1
    • 2
  • Alexander Beck
    • 1
    • 2
  • Alexandr Puchkovskiy
    • 1
    • 2
  • H.-Jürgen Appelrath
    • 1
    • 2
  1. 1.OFFIS - Institute for Computer ScienceOldenburgGermany
  2. 2.Epidemiological Cancer Registry Lower SaxonyOldenburgGermany

Personalised recommendations