Skip to main content

Plasma Transport by Turbulence

  • Chapter
  • First Online:
Plasma Physics for Controlled Fusion

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 92))

  • 2081 Accesses

Abstract

Particle diffusion coefficient due to drift fluctuation is given by (13.12) \(D = (\varDelta x)^2\gamma _k = (\varDelta x)^2/\tau _c =\gamma _k /k^2_x\) in Sect. 13.1. The more accurate radial width \(\varDelta x\) of eigenmode of ion temperature gradient driven drift turbulence depends on the shear. The diffusion coefficient in the strong shear configuration is Bohm type and the diffusion coefficient in the weak shear configuration is gyroBohm type \(D\sim (T/eB)(\rho _i/L_p)\). Loss by magnetic fluctuation is explained in Sect. 13.2. Dimensional analysis of transport and analysis by computer simulation are given by Sects. 13.3 and 13.4 respectively. Hasegawa–Mima–Charney equation (13.41) is derived in Sect. 13.5. Evolution of k spectrum power density is given by (13.64). The condition to generate the zonal flow is given by (13.70) in Sect. 13.5.2. The geodesic acoustic mode (GAM) is explained in Sect. 13.5.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Horton, Phys. Rev. Lett. 37, 1269 (1976); W. Horton, Rev. Mod. Phys. 71, 735 (1999)

    Google Scholar 

  2. S. Hamaguchi, W. Horton, Phys. Fluids B 4, 319 (1992)

    Article  ADS  Google Scholar 

  3. W. Horton Jr., R. Esres, H. Kwak, D.-I. Choi, Phys. Fluids 21, 1366 (1978)

    Article  ADS  Google Scholar 

  4. F. Romanelli, F. Zonca, Phys. Fluids B5, 4081 (1993) ;J.Y. Kim, M. Wakatani, Phys. Rev. Lett. 73, 2200 (1994)

    Google Scholar 

  5. Y. Kishimoto, J.Y. Kim, T. Fukuda, S. Ishida, T. Fujita, T. Tajima, W. Horton, G. Furnish, M.J. LeBrun, 6th IAEA Fusion Energy Conference (Conference Proceedings, Motreal 1996) vol. 2, 581 (1997) IAEA, Vienna Y. Kisihimoto, J. Plasma Fusion Res. 76, 1280 (2000) (in Japanese)

    Google Scholar 

  6. A.B. Rechester, M.N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978)

    Article  ADS  Google Scholar 

  7. J.W. Connor, J.B. Taylor, Nucl. Fusion 17, 1047 (1977)

    Article  ADS  Google Scholar 

  8. B.B. Kadomtsev, Sov. J. Plasma Phys. 1, 295 (1975)

    Google Scholar 

  9. J.W. Connor, Plasma Phys. Contr. Fusion 30, 619 (1988); J. Cordy, K. Thompsen, A. Chudnovskiy, O.J.W.F. Kardaun, T. Takizuka et al. Nucl. Fusion 45, 1078 (2005)

    Google Scholar 

  10. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, NewYork, 1981)

    MATH  Google Scholar 

  11. T. Tajima, Computational Plasma Physics: With Application to Fusion and Astrophysics (Addison-Wesley, Redwood, 1989)

    Google Scholar 

  12. C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation (IOP Pubishing Ltd., Bristol, 1991)

    Book  Google Scholar 

  13. W.W. Lee, Phys. Fluids 26, 556 (1983); W.W. Lee: J. Comput. Phys. 72, 243 (1987)

    Google Scholar 

  14. S.E. Parker, W.W. Lee, R.A. Santoro, Phys. Rev. Lett. 71, 2042 (1993)

    Article  ADS  Google Scholar 

  15. S.E. Parker, W.W. Lee, Phys. Fluids B 5, 77 (1993)

    Article  ADS  Google Scholar 

  16. A.M. Dimits, B.I. Cohen, N. Mattor, W.M. Nevins, D.E. Shumaker, Nucl. Fusion 40, 661 (2000)

    Article  ADS  Google Scholar 

  17. A.M. Dimits, G. Bateman, M.A. Beer, B.I. Cohen, W. Dorland et al., Phys. Plasmas 7, 969 (2000)

    Article  ADS  Google Scholar 

  18. R.G. Littlejohn, Phys. Fluids 24, 1730 (1981); R.G. Littlejohn, J. Plasma Phys. 29, 111 (1983); A. Brizard, J. Plasma Phys. 41, 541 (1989); H. Sugama, Phys. Plasmas 7, 466 (2000)

    Google Scholar 

  19. A.B. Langdon, C.K. Birdsall, Phys. Fluids 13, 2115 (1970); H. Okuda, C.K. Birdsall, Phys. Fluids 13, 2123 (1970); H. Okuda, Phys. Fluids 15, 1268 (1972)

    Google Scholar 

  20. H. Naitou, J. Plasma Fusion Res. 74, 470 (1998). (in Japanese)

    Google Scholar 

  21. K. Nishimura, R. Horiuchi, T. Sato, Phys. Plasmas 4, 4035 (1997); R. Horiuchi, T. Sato. Phys. Fluids B 2, 2652 (1990)

    Google Scholar 

  22. M.J. LeBrun, T. Tajima, M.G. Gray, G. Furnish, W. Horton, Phys. Fluids B 5, 752 (1993)

    Article  ADS  Google Scholar 

  23. Y. Kishimoto, J.-Y. Kim, W. Horton, T. Tajima, M.J. LeBrun, H. Shirai, Plasma Phys. Contr. Fusion 40, A663 (1998)

    Google Scholar 

  24. A. Hasegawa, C.G. Maclennan, Y. Kodama, Phys. Fluids 22, 2122 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Hasegawa, K. Mima, Phys. Fluids 21, 87 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  26. A.I. Dyachenko, S.V. Nazarenko, V.E. Zakharov, Phys. Lett. A 165, 330 (1992)

    Article  ADS  Google Scholar 

  27. Z. Lin, T.S. Hahm, W.W. Lee, W.M. Tang, R.B. White, Science 281, 1835 (1998)

    Article  ADS  Google Scholar 

  28. P.N. Guzdar, R.G. Kleva, L. Chen, Phys. Plasmas 87, 459 (2001)

    Google Scholar 

  29. A.I. Smolyakov, P.H. Diamond, M. Malkov, Phys. Rev. Lett. 84, 491 (2000)

    Article  ADS  Google Scholar 

  30. N. Winsor, J.L. Johnson, J.M. Dawson, Phys. Fluids 11, 2448 (1968)

    Article  ADS  Google Scholar 

  31. K. Itoh, K. Hallatschek, S.-I. Itoh, Plasma Phys. Contr. Fusion 47, 451 (2005)

    Article  ADS  Google Scholar 

  32. Y. Idomura, S. Tokuda, Y. Kishimoto, Nucl. Fusion 43, 234 (2003)

    Article  ADS  Google Scholar 

  33. Y. Idomura, S. Totsuka, Y. Kishimoto, Nucl. Fusion 45, 1571 (2005)

    Article  ADS  Google Scholar 

  34. A. Fujisawa, K. Itoh, H. Iguchi, K. Matsuoka, S. Okamomura et al., Phys. Rev. Lett. 93, 165002 (2004)

    Article  ADS  Google Scholar 

  35. G.D. Conway, B. Scott, J. Schirmer, M. Reich, A. Kendl, ASDEX-U Team: Plasma Phys. Contr. Fusion 47, 1165 (2005)

    Google Scholar 

  36. P.H. Diamond, S-I. Itoh, K. Itoh, T.S. Hahm: Plasma Phys. Contr. Fusion 47, R35 (2005); P.H. Diamond, K. Itoh, S-I. Itoh, T.S. Hahm, 20th Fusion Energy Conf. (Vilamoura 2004) OV/2-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenro Miyamoto .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miyamoto, K. (2016). Plasma Transport by Turbulence. In: Plasma Physics for Controlled Fusion. Springer Series on Atomic, Optical, and Plasma Physics, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49781-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49781-4_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49780-7

  • Online ISBN: 978-3-662-49781-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics