Skip to main content

Disorders of Haem Biosynthesis

  • Chapter
Book cover Inborn Metabolic Diseases

Zusammenfassung

X-Linked sideroblastic anaemia is often due to loss of function mutations of ALAS2. Characteristics of the disease include adult-onset anaemia, ineffective erythropoiesis with formation of ring sideroblasts, iron accumulation and pyridoxine responsiveness. Porphyrias are metabolic disorders that are due to altered activity of enzymes of this pathway, and are associated with striking accumulations and excess excretion of haem pathway intermediates and their oxidised products. Erythropoietic porphyrias usually present in childhood and hepatic porphyrias during adult life. The three most common porphyrias, are porphyria cutanea tarda, acute intermittent porphyria and erythropoietic protoporphyria. Acute intermittent porphyria presents with acute neurovisceral symptoms and can be aggravated by certain drugs, hormones and nutritional changes, and is treated with intravenous haemin and carbohydrate loading. The skin is affected in the other two, but quite differently. All porphyrias are inherited, with the exception of porphyria cutanea tarda, which is mostly due to an acquired enzyme deficiency in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phillips JD, Anderson KE (2016) The porphyrias (Chapter 58). In: Kaushansky K, Lichtman MA, Prchal JT et al. (eds) Williams Hematology, 9th edn. New York: McGraw-Hill, pp 839–863

    Google Scholar 

  2. Harigae H, Furuyama K (2010) Hereditary sideroblastic anemia: pathophysiology and gene mutations. Int J Hematol 92:425–431

    Google Scholar 

  3. Campagna DR, de Bie CI, Schmitz-Abe K et al. (2014) X-linked sideroblastic anemia due to ALAS2 intron 1 enhancer element GATA-binding site mutations. Am J Hematol 89:315–319

    Google Scholar 

  4. Bekri S, May A, Cotter PD et al. (2003) A promoter mutation in the erythroid-specific 5-aminolevulinate synthase (ALAS2) gene causes X-linked sideroblastic anemia. Blood 102:698–704

    Google Scholar 

  5. Cazzola M, May A, Bergamaschi G (2002) Absent phenotypic expression of X-linked sideroblastic anemia in one of 2 brothers with a novel ALAS2 mutation. Blood 100:4236–4238

    Google Scholar 

  6. Cazzola M, May A, Bergamaschi G et al. (2000) Familial-skewed X-chromosome inactivation as a predisposing factor for late-onset X-linked sideroblastic anemia in carrier females. Blood 96:4363–4365

    Google Scholar 

  7. Donker AE, Raymakers RA, Nieuwenhuis HK et al. (2014) X-linked sideroblastic anaemia due to ALAS(2) mutations in the Netherlands: a disease in disguise. Neth J Med 72:210–217

    Google Scholar 

  8. Bergmann AK, Campagna DR, McLoughlin EM et al. (2010) Systematic molecular genetic analysis of congenital sideroblastic anemia: evidence for genetic heterogeneity and identification of novel mutations. Pediatr Blood Cancer 54:273–278

    Google Scholar 

  9. Chakraborty PK, Schmitz-Abe K, Kennedy EK et al. (2014) Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood 124:2867–2871

    Google Scholar 

  10. Sarkany RP (2008) Making sense of the porphyrias. Photodermatol Photoimmunol Photomed 24:102–108

    Google Scholar 

  11. Anderson KE, Bloomer JR, Bonkovsky HL et al. (2005) Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med 142:439–450

    Google Scholar 

  12. Gou EW, Balwani M, Bissell DM et al. (2015) Pitfalls in Erythrocyte Protoporphyrin Measurement for Diagnosis and Monitoring of Protoporphyrias. Clin Chem 61:1453–1456

    Google Scholar 

  13. Poh-Fitzpatrick MB (1980) A plasma porphyrin fluorescence marker for variegate porphyria. Arch Dermatol 116:543–547

    Google Scholar 

  14. Akagi R, Kato N, Inoue R et al. (2006) δ-Aminolevulinate dehydratase (ALAD) porphyria: The first case in North America with two novel ALAD mutations. Mol Genet Metab 87:329–336

    Google Scholar 

  15. Bonkovsky HL, Maddukuri VC, Yazici C et al. (2014) Acute porphyrias in the USA: features of 108 subjects from the porphyrias consortium. Am J Med 127:1233–1241

    Google Scholar 

  16. Pischik E, Kauppinen R (2009) Neurological manifestations of acute intermittent porphyria. Cell Mol Biol 55:72–83

    Google Scholar 

  17. Yrjonen A, Pischik E, Mehtala S, Kauppinen R (2008) A novel 19-bp deletion of exon 15 in the HMBS gene causing acute intermittent porphyria associating with rhabdomyolysis during an acute attack. Clin Genet 74:396–398

    Google Scholar 

  18. Kauppinen R, Mustajoki P (1992) Prognosis of acute porphyria: occurrence of acute attacks, precipitating factors, and associated diseases. Medicine 71:1–13

    Google Scholar 

  19. Sardh E, Wahlin S, Bjornstedt M, Harper P, Andersson DE (2013) High risk of primary liver cancer in a cohort of 179 patients with acute hepatic porphyria. J Inherit Metab Dis 36:1063–1071

    Google Scholar 

  20. Solis C, Martinez-Bermejo A, Naidich TP et al. (2004) Acute intermittent porphyria: studies of the severe homozygous dominant disease provides insights into the neurologic attacks in acute porphyrias. Arch Neurol 61:1764–1770

    Google Scholar 

  21. Harper P, Sardh E (2014) Management of acute intermittent porphyria. Exp Opin Orphan Drugs 2:349–368

    Google Scholar 

  22. Serrano-Mendioroz I, Sampedro A, Mora MI et al. (2015) Vitamin D-binding protein as a biomarker of active disease in acute intermittent porphyria. J Proteomics 127:377–385

    Google Scholar 

  23. Whatley SD, Mason NG, Woolf JR (2009) Diagnostic strategies for autosomal dominant acute porphyrias: retrospective analysis of 467 unrelated patients referred for mutational analysis of the HMBS, CPOX, or PPOX gene. Clin Chem 55:1406–1414

    Google Scholar 

  24. Bonkovsky HL, Healey JF, Lourie AN, Gerron GG (1991) Intravenous heme-albumin in acute intermittent porphyria: evidence for repletion of hepatic hemoproteins and regulatory heme pools. Am J Gastroenterol 86:1050–1056

    Google Scholar 

  25. Willandt B, Langendonk JG, Biermann K et al. (2015) Liver fibrosis associated with iron accumulation due to long-term heme-arginate treatment in acute intermittent porphyria: a case series. JIMD Reports, Volume 25 pp 77–81

    Google Scholar 

  26. Frei P, Minder EI, Corti N et al. (2012) Liver transplantation because of acute liver failure due to heme arginate overdose in a patient with acute intermittent porphyria. Case Rep Gastroenterol 6:190–196

    Google Scholar 

  27. Wahlin S, Harper P, Sardh E et al. (2010) Combined liver and kidney transplantation in acute intermittent porphyria. Transpl Int 23:e18–21

    Google Scholar 

  28. Singal AK, Parker C, Bowden C et al. (2014) Liver transplantation in the management of porphyria. Hepatology 60:1082–1089

    Google Scholar 

  29. Yasuda M, Erwin AL, Liu LU et al. (2015) Liver transplantation for acute intermittent porphyria: biochemical and pathologic studies of the explanted liver. Mol Med 21:487–495

    Google Scholar 

  30. Dowman JK, Gunson BK, Mirza DF et al. (2012) Liver transplantation for acute intermittent porphyria is complicated by a high rate of hepatic artery thrombosis. Liver Transpl 18:195–200

    Google Scholar 

  31. Dowman JK, Gunson BK, Bramhall S, Badminton MN, Newsome PN (2011) Liver transplantation from donors with acute intermittent porphyria. Ann Intern Med 154:571–572

    Google Scholar 

  32. Yasuda M, Gan L, Chen B et al. (2014) RNAi-mediated silencing of hepatic Alas1 effectively prevents and treats the induced acute attacks in acute intermittent porphyria mice. Proc Natl Acad Sci USA 111:7777–7782

    Google Scholar 

  33. Paneda A, Lopez-Franco E, Kaeppel C et al. (2013) Safety and liver transduction efficacy of rAAV5-cohPBGD in nonhuman primates: a potential therapy for acute intermittent porphyria. Hum Gene Ther 24:1007–1017

    Google Scholar 

  34. Anderson KE, Spitz IM, Bardin CW, Kappas A (1990) A GnRH analogue prevents cyclical attacks of porphyria. Arch Int Med 150:1469–1474

    Google Scholar 

  35. Katugampola RP, Badminton MN, Finlay AY et al. (2012) Congenital erythropoietic porphyria: a single-observer clinical study of 29 cases. Br J Dermatol 167:901–913

    Google Scholar 

  36. Verstraeten L, Van Regemorter N, Pardou A et al. (1993) Biochemical diagnosis of a fatal case of Gunther’s disease in a newborn with hydrops-fetalis. Eur J Clin Chem Clin Biochem 31:121–128

    Google Scholar 

  37. Sassa S, Akagi R, Nishitani C, Harigae H, Furuyama K (2002) Late-onset porphyrias: what are they? Cell Mol Biol 48:97–101

    Google Scholar 

  38. Ged C, Moreau-Gaudry F, Richard E, Robert-Richard E, de Verneuil H (2009) Congenital erythropoietic porphyria: mutation update and correlations between genotype and phenotype. Cell Mol Biol 55:53–60

    Google Scholar 

  39. Phillips JD, Steensma DP, Pulsipher MA, Spangrude GJ, Kushner JP (2007) Congenital erythropoietic porphyria due to a mutation in GATA1: the first trans-acting mutation causative for a human porphyria. Blood 109:2618–2621

    Google Scholar 

  40. Katugampola RP, Anstey AV, Finlay AY et al. (2012) A management algorithm for congenital erythropoietic porphyria derived from a study of 29 cases. Br J Dermatol 167:888–900

    Google Scholar 

  41. Poh-Fitzpatrick MB, Piomelli S, Seaman C, Skolnick LM (1988) Congenital erythropoietic porphyria: complete suppression of symptoms by long-term high-level transfusion with deferoxamine infusion iron rescue. In: Orfanos CE, Stadler R, Gollnick H (eds). Dermatology in five continents. Berlin: Springer-Verlag, pp 876–879

    Google Scholar 

  42. Guarini L, Piomelli S, Poh-Fitzpatrick MB (1994) Hydroxyurea in congenital erythropoietic porphyria (letter). New Engl J Med 330:1091–1092

    Google Scholar 

  43. Egan DN, Yang Z, Phillips J, Abkowitz JL (2015) Inducing iron deficiency improves erythropoiesis and photosensitivity in congenital erythropoietic porphyria. Blood 126:257–261

    Google Scholar 

  44. Geronimi F, Richard E, Lamrissi-Garcia I et al. (2003) Lentivirus-mediated gene transfer of uroporphyrinogen III synthase fully corrects the porphyric phenotype in human cells. J Mol Med 81:310–320

    Google Scholar 

  45. Blouin JM, Duchartre Y, Costet P et al. (2013) Therapeutic potential of proteasome inhibitors in congenital erythropoietic porphyria. Proc Natl Acad Sci USA 110:18238-18243

    Google Scholar 

  46. Elder GH (2003) Porphyria cutanea tarda and related disorders (Chapter 88). In: Kadish KM, Smith K, Guilard R, eds. Porphyrin Handbook, Part II. San Diego: Academic Press, pp 67–92

    Google Scholar 

  47. Jalil S, Grady JJ, Lee C, Anderson KE (2010) Associations among behavior-related susceptibility factors in porphyria cutanea tarda. Clin Gastroenterol Hepatol 8:297–302

    Google Scholar 

  48. Phillips JD, Bergonia HA, Reilly CA, Franklin MR, Kushner JP (2007) A porphomethene inhibitor of uroporphyrinogen decarboxylase causes porphyria cutanea tarda. Proc Natl Acad Sci USA 104:5079-5084

    Google Scholar 

  49. Singal AK, Kormos-Hallberg C, Lee C et al. (2012) Low-dose hydroxychloroquine is as effective as phlebotomy in treatment of patients with porphyria cutanea tarda. Clin Gastroenterol Hepatol 10:1402–1409

    Google Scholar 

  50. Phillips JD, Whitby FG, Stadtmueller BM et al. (2007) Two novel uroporphyrinogen decarboxylase (URO-D) mutations causing hepatoerythropoietic porphyria (HEP). Transl Res 149:85–91

    Google Scholar 

  51. Armstrong DK, Sharpe PC, Chambers CR et al. (2004) Hepatoerythropoietic porphyria: a missense mutation in the UROD gene is associated with mild disease and an unusual porphyrin excretion pattern. Br J Dermatol 151:920–923

    Google Scholar 

  52. Meissner P, Adams P, Kirsch R (1993) Allosteric inhibition of human lymphoblast and purified porphobilinogen deaminase by protoporphyrinogen and coproporphyrinogen. A possible mechanism for the acute attack of variegate porphyria. J Clin Invest 91:1436–1444

    Google Scholar 

  53. Da Silva V, Simonin S, Deybach JC, Puy H, Nordmann Y (1995) Variegate porphyria: diagnostic value of fluorometric scanning of plasma porphyrins. Clin Chim Acta 238:163–168

    Google Scholar 

  54. Cox TM (2003) Protoporphyria (Chapter 90). In: Kadish KM, Smith K, Guilard R (eds) Porphyrin Handbook, Part II. San Diego: Academic Press, pp 121–149

    Google Scholar 

  55. Holme SA, Anstey AV, Finlay AY, Elder GH, Badminton MN (2006) Erythropoietic protoporphyria in the U.K.: clinical features and effect on quality of life. Br J Dermatol 155:574–581

    Google Scholar 

  56. Holme SA, Worwood M, Anstey AV, Elder GH, Badminton MN (2007) Erythropoiesis and iron metabolism in dominant erythropoietic protoporphyria. Blood 110:4108–4110

    Google Scholar 

  57. Muley SA, Midani HA, Rank JM, Carithers R, Parry GJ (1998) Neuropathy in erythropoietic protoporphyrias. Neurology 51:262–265

    Google Scholar 

  58. Whatley SD, Ducamp S, Gouya L et al. (2008) C-terminal deletions in the ALAS2 gene lead to gain of function and cause X-linked dominant protoporphyria without anemia or iron overload. Am J Hum Genet 83:408–414

    Google Scholar 

  59. Whatley SD, Mason NG, Holme SA et al. (2010) Molecular epidemiology of erythropoietic protoporphyria in the United Kingdom. Br J Dermatol 162:642–646

    Google Scholar 

  60. Balwani M, Doheny D, Bishop DF et al. (2013) Loss-of-function ferrochelatase and gain-of-function erythroid-specific 5-aminolevulinate synthase mutations causing erythropoietic protoporphyria and X-linked protoporphyria in North American patients reveal novel mutations and a high prevalence of X-linked protoporphyria. Mol Med 19:26–35

    Google Scholar 

  61. Gouya L, Puy H, Lamoril J et al. (1999) Inheritance in erythropoietic protoporphyria: a common wild-type ferrochelatase allelic variant with low expression accounts for clinical manifestation. Blood 93:2105–2110

    Google Scholar 

  62. Holme SA, Whatley SD, Roberts AG et al. (2009) Seasonal palmar keratoderma in erythropoietic protoporphyria indicates autosomal recessive inheritance. J Invest Dermatol 129:599–605

    Google Scholar 

  63. Goodwin RG, Kell WJ, Laidler P et al. (2006) Photosensitivity and acute liver injury in myeloproliferative disorder secondary to late-onset protoporphyria caused by deletion of a ferrochelatase gene in hematopoietic cells. Blood 107:60–62

    Google Scholar 

  64. Poh-Fitzpatrick MB, DeLeo VA (1977) Rates of plasma porphyrin disappearance in fluorescent vs. red incandescent light exposure. J Invest Dermatol 69:510–512

    Google Scholar 

  65. Langendonk JG, Balwani M, Anderson KE et al. (2015) Afamelanotide for erythropoietic protoporphyria. N Engl J Med 373:48–59

    Google Scholar 

  66. Barman-Aksozen J, Minder EI, Schubiger C, Biolcati G, Schneider-Yin X (2015) In ferrochelatase-deficient protoporphyria patients, ALAS2 expression is enhanced and erythrocytic protoporphyrin concentration correlates with iron availability. Blood Cells Mol Dis 54:71–77

    Google Scholar 

  67. Bentley DP, Meek EM (2013) Clinical and biochemical improvement following low-dose intravenous iron therapy in a patient with erythropoietic protoporphyria. Br J Haematol 163:289–291

    Google Scholar 

  68. Landefeld C, Kentouche K, Gruhn B et al. (2016) X-linked protoporphyria: Iron supplementation improves protoporphyrin overload, liver damage and anaemia. Br J Haematol 173:482–484

    Google Scholar 

  69. Richard E, Robert-Richard E, Ged C, Moreau-Gaudry F, de Verneuil H (2008) Erythropoietic porphyrias: animal models and update in gene-based therapies. Curr Gen Ther 8:176–186

    Google Scholar 

  70. Rand EB, Bunin N, Cochran W et al. (2006) Sequential liver and bone marrow transplantation for treatment of erythropoietic protoporphyria. Pediatrics 118:e1896–1899

    Google Scholar 

  71. Wahlin S, Stal P, Adam R et al. (2011) Liver transplantation for erythropoietic protoporphyria in Europe. Liver Transpl 17:1021–1026

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charles Marquez Lourenço or Karl E. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lourenço, C.M., Anderson, K.E. (2016). Disorders of Haem Biosynthesis. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics