Advertisement

Disorders of Purine and Pyrimidine Metabolism

Chapter
  • 2.3k Downloads

Keywords

Uric Acid Cytidine Deaminase Orotic Acid Sulfite Oxidase Pyrimidine Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Balasubramaniam S, Duley JA, Christodoulou J (2014) Inborn errors of purine metabolism: clinical update and therapies. J Inherit Metab Dis 37:669–686Google Scholar
  2. 2.
    Balasubramaniam S, Duley JA, Christodoulou J (2014) Inborn errors of pyrimidine metabolism: clinical update and therapy. J Inherit Metab Dis 37:687–698Google Scholar
  3. 3.
    Sperling O, Boer P, Persky-Brosh S et al. (1972) Altered kinetic property of erythrocyte phosphoribosylpyrophosphate synthetase in excessive purine production. Rev Eur Etud Clin Biol 17:703–706Google Scholar
  4. 4.
    Becker MA, Puig JG, Mateos FA et al. (1988) Inherited superactivity of phosphoribosylpyrophosphate synthetase: association of uric acid overproduction and sensorineural deafness. Am J Med 85:383–390Google Scholar
  5. 5.
    Becker MA (2001) Phosphoribosylpyrophosphate synthetase and the regulation of phosphoribosylpyrophosphate production in human cells. Progr Nucleic Acid Res Mol Biol 69:115–148Google Scholar
  6. 6.
    de Brouwer APM, van Bokhoven H, Nabuurs SB et al. (2010) PRPS1 Mutations: Four distinct syndromes and potential treatment. Am J Hum Genet 86:506–518Google Scholar
  7. 7.
    Kranen S, Keough D, Gordon RB, Emmerson BT (1985) Xanthine-containing calculi during allopurinol therapy. J Urol 133:658–659Google Scholar
  8. 8.
    Mittal R, Patel K, Mittal J et al. (2015) Association of PRPS1 Mutations with Disease Phenotypes. Disease Markers doi:10.1155/2015/127013Google Scholar
  9. 9.
    Synofzik M, Müller vom Hagen J, Haack TB et al. (2014) X-linked Charcot-Marie-Tooth disease, Arts syndrome, and prelingual non-syndromic deafness form a disease continuum: evidence from a family with a novel PRPS1 mutation. Orphanet J Rare Dis 9:24–31Google Scholar
  10. 10.
    Jaeken J, Van den Berghe G (1984) An infantile autistic syndrome characterised by the presence of succinylpurines in body fluids. Lancet 2:1058–1061Google Scholar
  11. 11.
    Jaeken J, Wadman SK, Duran M et al. (1988) Adenylosuccinase deficiency: an inborn error of purine nucleotide synthesis. Eur J Pediatr 148:126–131Google Scholar
  12. 12.
    Van den Bergh FAJTM, Bosschaart AN, Hageman G et al. (1998) Adenylosuccinase deficiency with neonatal onset severe epileptic seizures and sudden death. Neuropediatrics 29:51–53Google Scholar
  13. 13.
    Mouchegh K, Zikanova M, Hoffmann GF et al. (2007) Lethal fetal and early postnatal presentation of adenylosuccinate lyase deficiency: observation of 6 patients in 4 families. J Pediatr 150:57–61Google Scholar
  14. 14.
    Mierzewska H, Schmidt-Sidor B, Jurkiewicz E et al. (2009) Severe encephalopathy with brain atrophy and hypomyelination due to adenylosuccinate lyase deficiency – MRI, clinical, biochemical and neuropathological findings of Polish patients. Folia Neuropathol 4:314–320Google Scholar
  15. 15.
    Jurecka A, Zikanova M, Tylki-Szymanska A et al. (2008) Clinical, biochemical and molecular findings in seven Polish patients with adenylosucinate lyase deficiency. Mol Gen Metab 94:435–442Google Scholar
  16. 16.
    Spiegel EK, Colman RF, Patterson D (2006) Adenylosuccinate lyase deficiency. Mol Genet Metab 89:19–31Google Scholar
  17. 17.
    Zulfiqar M, Lin DDM, Van der Graaf M et al. (2013) Novel proton MR spectroscopy findings in adenylosuccinate lyase deficiency. J Magn Reson Imaging 37:974–980Google Scholar
  18. 18.
    Laikind PK, Seegmiller JE, Gruber HE (1986) Detection of 5’-phosphoribosyl-4-(N-succinylcarboxamide)-5-aminoimidazole in urine by use of the Bratton-Marshall reaction: identification of patients deficient in adenylosuccinate lyase activity. Anal Biochem 156:81–90Google Scholar
  19. 19.
    Ito T, van Kuilenburg ABP, Bootsma AH et al. (2000) Rapid screening of high-risk patients for disorders of purine and pyrimidine metabolism using HPLC-electrospray tandem mass spectrometry of liquid urine or urine-soaked filter paper strips. Clin Chem 46:445–452Google Scholar
  20. 20.
    Hartmann S, Okun JG, Schmidt C et al. (2006) Comprehensive detection of disorders of purine and pyrimidine metabolism by HPLC with electrospray ionization tandem mass spectrometry. Clin Chem 52:1127–1137Google Scholar
  21. 21.
    Van Werkhoven MA, Duley JA, McGown I et al. (2013) Early diagnosis of adenylosuccinate lyase deficiency using a high-throughput screening method and a trial of oral S-adenosyl-L-methionine as a treatment method. Dev Med Child Neurol 55:1060–1064Google Scholar
  22. 22.
    Marie S, Flipsen JWAM, Duran M et al. (2000) Prenatal diagnosis in adenylosuccinate lyase deficiency. Prenat Diagn 20:33–36Google Scholar
  23. 23.
    Jurecka A, Tylki-Szymanska A, Zikanova M et al. (2008) D-Ribose therapy in four Polish patients with adenylosuccinate lyase deficiency: absence of positive effect. J Inherit Metab Dis 31 Suppl 2:S329–332Google Scholar
  24. 24.
    Jurecka A, Opoka-Winiarska V, Rokicki D, Tylki-Szymanska A (2012) Neurologic presentation, diagnostics, and therapeutic insights in a severe case of adenylosuccinate lyase deficiency. J Child Neurol 27:645–649Google Scholar
  25. 25.
    Marie S, Heron B, Bitoun P et al. (2004) AICA-Ribosiduria: a novel, neurologically devastating inborn error of purine biosynthesis caused by mutation of ATIC. Am J Hum Genet 74:1276–1281Google Scholar
  26. 26.
    Marie S, Ceballos-Picot I, Deloriere E, Imbard A, Benoist JF, Dewulf J, Vincent MF, Rio M (2015) A new case of AICA-ribosiduria. JIMD 38:S231Google Scholar
  27. 27.
    Fishbein WN, Armbrustmacher VW, Griffin JL (1978) Myoadenylate deaminase deficiency: a new disease of muscle. Science 200:545–548Google Scholar
  28. 28.
    Shumate JB, Katnik R, Ruiz M et al. (1979) Myoadenylate deaminase deficiency. Muscle Nerve 2:213–216Google Scholar
  29. 29.
    Mercelis R, Martin JJ, de Barsy T, Van den Berghe G (1987) Myoadenylate deaminase deficiency: absence of correlation with exercise intolerance in 452 muscle biopsies. J Neurol 234:385–389Google Scholar
  30. 30.
    Van den Berghe G, Bontemps F, Vincent MF, Van den Bergh F (1992) The purine nucleotide cycle and its molecular defects. Progr Neurobiol 39:547–561Google Scholar
  31. 31.
    Hayes LD, Houston FE, Baker JS (2013) Genetic predictors of adenosine monophosphate deaminase deficiency. J Sports Med Doping Stud 3:124–127Google Scholar
  32. 32.
    Morisaki T, Gross M, Morisaki H et al. (1992) Molecular basis of AMP deaminase deficiency in skeletal muscle. Proc Natl Acad Sci USA 89:6457–6461Google Scholar
  33. 33.
    Norman B, Glenmark B, Jansson E (1995) Muscle AMP deaminase deficiency in 2% of a healthy population. Muscle Nerve 18:239–241Google Scholar
  34. 34.
    Sabina RL, Fishbein WN, Pezeshkpour G et al. (1992) Molecular analysis of the myoadenylate deaminase deficiencies. Neurology 42:170–179Google Scholar
  35. 35.
    Zöllner N, Reiter S, Gross M et al. (1986) Myoadenylate deaminase deficiency: successful symptomatic therapy by high dose oral administration of ribose. Klin Wochenschr 64:1281–1290Google Scholar
  36. 36.
    Akizu N, Cantagrel V, Schroth J et al. (2013) AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder. Cell 154:505–517Google Scholar
  37. 37.
    Novarino G, Fenstermaker AG, Zaki MS et al. (2014) Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 343:506–511Google Scholar
  38. 38.
    Ogasawara N, Goto H, Yamada Y et al. (1987) Deficiency of AMP deaminase in erythrocytes. Hum Genet 75:15–18Google Scholar
  39. 39.
    Hershfield MS, Arredondo-Vega FX, Santisteban I (1997) Clinical expression, genetics and therapy of adenosine deaminase (ADA) deficiency. J Inher Metab Dis 20:179–185Google Scholar
  40. 40.
    Hershfield M (2014) Adenosine deaminase deficiency. In: Pagon RA, Adam MP, Ardinger HH et al. (eds) Gene Reviews. http://www.ncbi.nlm.nih.gov/books/NBK1483/. Last view: 29.04.2016
  41. 41.
    Bollinger ME, Arredondo-Vega FX, Santisteban I et al. (1996) Brief report: hepatic dysfunction as a complication of adenosine deaminase deficiency. N Engl J Med 334:1367–1371Google Scholar
  42. 42.
    Hirschhorn R, Yang DR, Puck JM et al. (1996). Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency. Nat Genet 13:290–295Google Scholar
  43. 43.
    Gaspar HB, Aiuti A, Porta F et al. (2009) How I treat ADA deficiency. Blood 114:3524–3532Google Scholar
  44. 44.
    Hershfield MS (1995) PEG-ADA replacement therapy for adenosine deaminase deficiency: an update after 8.5 years. Clin Immunol Immunopathol 76:S228–S232Google Scholar
  45. 45.
    Booth C, Gaspar HB (2009) Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID). Biol Targets Therapy 3:349–358Google Scholar
  46. 46.
    Blaese RM, Culver KW, Miller AD et al. (1995) T-lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270:475–480Google Scholar
  47. 47.
    Gaspar HB (2012) Gene therapy for ADA-SCID: defining the factors for successful outcome. Blood 120:3628–3629Google Scholar
  48. 48.
    Candotti F, Shaw KL, Muul L et al. (2012) Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Bood 120:3635–3646Google Scholar
  49. 49.
    Carbonaro DA, Xiangyang J, Xinghao W et al. (2012) Gene therapy/bone marrow transplantation in ADA-deficient mice: roles of enzyme replacement therapy and cytoreduction. Bood 120:3677–3686Google Scholar
  50. 50.
    Zhou Q, Yang D, Ombrello AK et al. (2014) Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 370:911–920Google Scholar
  51. 51.
    Navon Elkan P, Pierce SB, Segel R et al. (2014) Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 370:921–931Google Scholar
  52. 52.
    Valentine WN, Paglia DE, Tartaglia AP, Gilsanz F (1977) Hereditary hemolytic anemia with increased red cell adenosine deaminase (45- to 70-fold) and decreased adenosine triphosphate. Science 195:783–785Google Scholar
  53. 53.
    Fargo JH, Kratz CP, Giri N et al. (2013) Erythrocyte adenosine deaminase: diagnostic value for Diamond-Blackfan anaemia. Br J Haematol 160:547–554Google Scholar
  54. 54.
    Markert ML (1991) Purine nucleoside phosphorylase deficiency. Immunodefic Rev 3:45–81Google Scholar
  55. 55.
    Markert ML, Finkel BD, McLaughlin TM et al. (1997) Mutations in purine nucleoside phosphorylase deficiency. Hum Mutat 9:118–121Google Scholar
  56. 56.
    Carpenter PA, Ziegler JB, Vowels MR (1996) Late diagnosis and correction of purine nucleoside phosphorylase deficiency with allogeneic bone marrow transplantation. Bone Marrow Transplant 17:121–124Google Scholar
  57. 57.
    Baguette C, Vermylen C, Brichard B et al. (2002) Persistent developmental delay despite successful bone marrow transplantation for purine nucleoside phosphorylase deficiency. J Pediatr Hematol Oncol 24:69–71Google Scholar
  58. 58.
    Delicou S, Kitra-Roussou V, Peristeri J (2007) Successful HLA-identical hematopoietic stem cell transplantation in a patient with purine nucleoside phosphorylase deficiency. Pediatr Transplant 11:799–803Google Scholar
  59. 59.
    Ichida K, Amaya Y, Kamatani N et al. (1997) Identification of two mutations in human xanthine dehydrogenase gene responsible for classical type I xanthinuria. J Clin Invest 99:2391–2397Google Scholar
  60. 60.
    Yamamoto T, Moriwaki Y, Takahashi S et al. (2003) Identification of a new point mutation in the human molybdenum cofactor sulferase gene that is responsible for xanthinuria type II. Metabolism 52:1501–1504Google Scholar
  61. 61.
    Lesch M, Nyhan WL (1964) A familial disorder of uric acid metabolism and central nervous system dysfuntion. Am J Med 36:561–570Google Scholar
  62. 62.
    Jinnah HA, Vissser JE, Harris JC et al. (2006) Delineation of the motor disorder of Lesch-Nyhan disease. Brain 129:1201–1217Google Scholar
  63. 63.
    Jinnah HA, Ceballos-Picot I, Torres RJ et al. (2010) Lesch-Nyhan Disease International Study Group. Attenuated variants of Lesch-Nyhan disease. Brain 133:671–689Google Scholar
  64. 64.
    Ernst M, Zametkin AJ, Matochik JA et al. (1996) Presynaptic dopaminergic deficits in Lesch-Nyhan disease. N Engl J Med 334:1568–1572Google Scholar
  65. 65.
    Guibinga GH, Hsu S, Friedmann T (2010) Deficiency of the housekeeping gene hypoxanthine-guanine phosphoribosyltransferase (HPRT) dysregulates neurogenesis. Mol Ther 18:54–62Google Scholar
  66. 66.
    Nyhan WL, O’Neill JP, Harris JC, Jinnah HA (2014) Lesch-Nyhan syndrome. In: Pagon RA, Adam MP, Ardinger HH et al. (eds) Gene Reviews. http://www.ncbi.nlm.nih.gov/books/NBK1149/. Last view: 29.04.2016
  67. 67.
    Jinnah HA, De Gregorio L, Harris JC et al. (2000) The spectrum of inherited mutations causing HPRT deficiency: 75 new cases and a review of 196 previously reported cases. Mut Res 463:309–326Google Scholar
  68. 68.
    Alford RL, Redman JB, O’Brien WE, Caskey CT (1995) Lesch-Nyhan syndrome: carrier and prenatal diagnosis. Prenat Diagn 15:329–338Google Scholar
  69. 69.
    Kaufman JM, Greene ML, Seegmiller JE (1968) Urine uric acid to creatinine ratio – a screening test for inherited disorders of purine metabolism. Phosphoribosyl-transferase (PRT) deficiency in X-linked cerebral palsy and in a variant of gout. J Pediatr 73:583–592Google Scholar
  70. 70.
    Seegmiller JE, Rosenbloom FM, Kelley WN (1967) Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science 155:1682–1684Google Scholar
  71. 71.
    Page T, Bakay B, Nissinen E, Nyhan WL (1981) Hypoxanthine-guanine phosphoribosyltransferase variants: correlation of clinical phenotype with enzyme activity. J Inher Metab Dis 4:203–206Google Scholar
  72. 72.
    Watts RWE, McKeran RO, Brown E et al. (1974) Clinical and biochemical studies on treatment of Lesch-Nyhan syndrome. Arch Dis Child 49:693–702Google Scholar
  73. 73.
    Nyhan WL, Parkman R, Page T et al. (1986) Bone marrow transplantation in Lesch-Nyhan disease. Adv Exp Med Biol 195A:167–170Google Scholar
  74. 74.
    Taira T, Kobayashi T, Hori T (2003) Disappearance of self-mutilating behavior in a patient with Lesch-Nyhan syndrome after bilateral chronic stimulation of the globus pallidus internus. Case report. J Neurosurg 98:414–416Google Scholar
  75. 75.
    Chen BC, Balasubramaniam S, McGown IN et al. (2014) Treatment of Lesch-Nyhan disease with S-adenosylmethionine: Experience with five young Malaysians, including a girl. Brain Dev 36:593–600Google Scholar
  76. 76.
    Dolcetta D, Parmigiani P, Salmaso L et al. (2013) Quantitative evaluation of the clinical effects of S-adenosylmethionine on mood and behavior in Lesch-Nyhan patients. Nucleosides Nucleotides Nucleic Acids 32:174–188Google Scholar
  77. 77.
    Harambat J, Bollée G, Daudon M et al. (2012) Adenine phosphoribosyltransferase deficiency in children. Pediatr Nephrol 27:571–579Google Scholar
  78. 78.
    Van Acker KJ, Simmonds HA, Potter C, Cameron JS (1977) Complete deficiency of adenine phosphoribosyltransferase. Report of a family. N Engl J Med 297:127–132Google Scholar
  79. 79.
    Bollée G, Dollinger C, Boutaud L et al. (2010) Phenotype and genotype characterization of adenine phosphoribosyltransferase deficiency. J Am Soc Nephrol 21:679–688Google Scholar
  80. 80.
    Bollée G, Harambat J, Bensman A (2012) Adenine Phosphoribosyltransferase Deficiency. Clin J Am Soc Nephrol 7:1521–1527Google Scholar
  81. 81.
    Greenwood MC, Dillon MJ, Simmonds HA et al. (1982) Renal failure due to 2,8-dihydroxyadenine urolithiasis. Eur J Pediatr 138:346–349Google Scholar
  82. 82.
    Hidaka Y, Tarlé SA, Fujimori S et al. (1988) Human adenine phosphoribosyltransferase deficiency. Demonstration of a single mutant allele common to the Japanese. J Clin Invest 81:945–950Google Scholar
  83. 83.
    Sahota A, Chen J, Stambrook PJ, Tischfield JA (1991) Mutational basis of adenine phosphoribosyltransferase deficiency. Adv Exp Med Biol 309B:73–76Google Scholar
  84. 84.
    Eller P, Rosenkranz AR, Mark W et al. (2004) Four consecutive renal transplantations in a patient with adenine phosphoribosyltransferase deficiency. Clin Nephrol 61:217–221Google Scholar
  85. 85.
    Toren A, Brok-Simoni F, Ben-Bassat I et al. (1994) Congenital haemolytic anemia associated with adenylate kinase deficiency. Br J Haematol 87:376–380Google Scholar
  86. 86.
    Henderson LA, Frugoni F, Hopkins G et al. (2013) First reported case of Omenn syndrome in a patient with reticular dysgenesis. J Allergy Clin Immunol 131:1227–1230Google Scholar
  87. 87.
    Lagresle-Peyrou C, Six EM, Picard C et al. (2009) Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat Genet 41:106–111Google Scholar
  88. 88.
    Six E, Lagresle-Peyrou C, Susini S et al. (2015) AK2 deficiency compromises the mitochondrial energy metabolism required for differentiation of human neutrophil and lymphoid lineages. Cell Death Dis 6:e1856Google Scholar
  89. 89.
    Bjursell MK, Blom HJ, Cayuela JA et al. (2011) Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. Am J Hum Genet 89:507–5015Google Scholar
  90. 90.
    Staufner C, Lindner M, Dionisi-Vici C et al. (2015) Adenosine kinase deficiency: expanding the clinical spectrum and evaluating therapeutic options. JIMD 38:S42Google Scholar
  91. 91.
    E Wiame, D Balthausen, J Dewulf et al. (2015) New biochemical markers in adenosine kinase deficiency. JIMD 38:S232Google Scholar
  92. 92.
    Chen YZ, Friedman JR, Chen DH et al. (2014) Gain-of-function ADCY5 mutations in familial dyskinesia with facial myokymia. Ann Neurol 75:542–549Google Scholar
  93. 93.
    Mencacci NE1, Erro R, Wiethoff S et al. (2015) ADCY5 mutations are another cause of benign hereditary chorea. Neurology 85:80–88Google Scholar
  94. 94.
    Chen DH, Meneret A, Friedman JR et al. (2015) ADCY5-related dyskinesia: Broader spectrum and genotype-phenotype correlations. Neurology 85:2026–2035Google Scholar
  95. 95.
    Bowne SJ, Sullivan LS, Mortimer SE et al. (2006) Spectrum and frequency of mutations in IMPDH1associated with autosomal dominant retinitis pigmentosa and Leber congenital amaurosis. Invest Ophtalmol Vis Sci 47:34–42Google Scholar
  96. 96.
    Borràs E, de Sousa Dias M, Hernan I et al. (2013) Detection of novel genetic variation in autosomal dominant retinitis pigmentosa. Clin Genet 84:441–452Google Scholar
  97. 97.
    Scaglia F, Dimmock D, Wong LJ (2009) DGUOK-related mitochondrial DNA depletion syndrome, hepatocerebral form. In: Pagon RA, Adam MP, Ardinger HH et al. (eds) Gene Reviews. http://www.ncbi.nlm.nih.gov/books/NBK7040/. Least view: 29.04.2016
  98. 98.
    Mandel H, Szargel R, Labay V et al. (2001) The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat Genet 29:337–341Google Scholar
  99. 99.
    Buchaklian AH, Helbling D, Ware SM, Dimmock DP (2012) Recessive deoxyguanosine kinase deficiency causes juvenile onset mitochondrial myopathy. Mol Genet Metab 107:92–94Google Scholar
  100. 100.
    Dimmock DP, Dunn JK, Feigenbaum A et al. (2008) Abnormal neurological features predict poor survival and should preclude liver transplantation in patients with deoxyguanosine kinase deficiency. Liver Transpl 14:1480–1485Google Scholar
  101. 101.
    Bulst S, Abicht A, Holinksi-Feder E et al. (2009) In vitro supplementation with dAMP/dGMP leads to partial restoration of mtDNA levels in mitochondrial depletion syndromes. Hum Mol Genet 18:1590–1599Google Scholar
  102. 102.
    Aarbakke J, Janka-Schaub G, Elion GB (1997) Thiopurine biology and pharmacology. TIPS 18:3–7Google Scholar
  103. 103.
    Sahasranaman S, Howard D, Roy S (2008) Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol 64:753–767Google Scholar
  104. 104.
    Yates CR, Krynetski EY, Loennechen T et al. (1997) Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 126:608–614Google Scholar
  105. 105.
    Sanderson J, Ansari A, Marinaki T, Duley J (2004) Thiopurine methyltransferase: should it be measured before commencing thiopurine drug therapy ? Ann Clin Biochem 41:294–302Google Scholar
  106. 106.
    Ng BG, Wolfe LA, Ichikawa M, Markello T et al. (2015) Biallelic mutations in CAD, impair de novo pyrimidine biosyhthesis and decrease glycosylation precursors. Hum Mol Genet 24:3050–3057Google Scholar
  107. 107.
    Huguley CM, Bain JA, Rivers SL, Scoggins RB (1959) Refractory megaloblastic anemia associated with excretion of orotic acid. Blood 14:615–634Google Scholar
  108. 108.
    Smith LH (1973) Pyrimidine metabolism in man. N Engl J Med 288:764–771Google Scholar
  109. 109.
    Bailey CJ (2009) Orotic aciduria and uridine monophosphate synthase: a reappraisal. J Inher Metab Dis 32 Suppl 1:S227–233Google Scholar
  110. 110.
    Grohmann K, Lauffer H, Lauenstein P, Hoffmann GF, Seidlitz G (2015). Hereditary orotic aciduria with epilepsy and without megaloblastic anemia. Neuropediatrics 46:123–125Google Scholar
  111. 111.
    Suchi M, Mizuno H, Kawai Y et al. (1997) Molecular cloning of the human UMP synthase gene and characterization of point mutations in two hereditary orotic aciduria families. Am J Hum Genet 60:525–539Google Scholar
  112. 112.
    Perry ME, Jones ME (1989) Orotic aciduria fibroblasts express a labile form of UMP synthase. J Biol Chem 264:15522–15528Google Scholar
  113. 113.
    Ng SB, Buckingham KJ, Lee C et al. (2010) Exome sequencing identifies the cause of a Mendelian disorder. Nat Genet 42:30–35Google Scholar
  114. 114.
    Rainger J, Bengani H, Campbell L et al. (2012) Miller syndrome (Genee-Wiedemann syndrome) represents a clinically and biochemically distinct subgroup of postaxial acrofacial dysostosis associated with partial deficiency of DHODH. Hum Mol Genet 21:3660–3983Google Scholar
  115. 115.
    Van Gennip AH, Abeling NGGM, Vreken P, van Kuilenburg ABP (1997) Inborn errors of pyrimidine degradation: clinical, biochemical and molecular aspects. J Inher Metab Dis 20:203–213Google Scholar
  116. 116.
    Tuchman M, Stoeckeler JS, Kiang DT et al. (1985) Familial pyrimidinemia and pyrimidinuria associated with severe fluorouracil toxicity. N Engl J Med 313:245–249Google Scholar
  117. 117.
    Van Kuilenburg ABP (2004) Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur J Cancer 40:939–950Google Scholar
  118. 118.
    Van Kuilenburg AB, Vreken P, Abeling NG et al. (1999) Genotype and phenotype in patients with dihydropyrimidine dehydrogenase deficiency. Hum Genet 104:1–9Google Scholar
  119. 119.
    Van Kuilenburg ABP, Meijer J, Mul ANPM et al. (2009) Analysis of severely affected patients with dihydropyrimidine dehydrogenase deficiency reveals large intragenic rearrangements of DPYD and a de novo interstitial deletion del (1)(p13.3p21.3). Hum Genet 125:581–590Google Scholar
  120. 120.
    Van Kuilenburg ABP, Meijer J, Mul ANPM (2010) Intragenic deletions and a deep intronic mutation affecting pre-mRNA splicing in the dihydropyrimidine dehydrogenase gene as novel mechanisms causing 5-fluorouracil toxicity. Hum Genet 128:529–538Google Scholar
  121. 121.
    Van Gennip AH, Driedijk PC, Elzinga A, Abeling NGGM (1992) Screening for defects of dihydropyrimidine degradation by analysis of amino acids in urine before and after acid hydrolysis. J Inher Metab Dis 15:413–415Google Scholar
  122. 122.
    Van Staveren MC, Guchelaar HJ, van Kuilenburg ABP, Gelderblom H, Maring JG (2013) Evaluation of predictive tests for screening for dihydropyrimidine dehydrogenase deficiency. Pharmacogenomics J 13:389–395Google Scholar
  123. 123.
    Del Re M, Michelucci A, Di Leo A et al. (2015) Discovery of novel mutations in the dihydropyrimidine dehydrogenase gene associated with toxicity of fluoropyrimidines and viewpoint on preemptive pharmacogenetic screening in patients. EPMA J 6:17Google Scholar
  124. 124.
    Van Kuilenburg ABP, Dobritzsch D, Meijer J et al. (2010) Dihydropyrimidinase deficiency: phenotype, genotype and structural consequences in 17 patients. Bioch Biophys Acta 1802:639–648Google Scholar
  125. 125.
    Van Kuilenburg AB, Meinsma R, Zonnenberg BA et al. (2003) Dihydropyrimidinase deficiency and severe 5-fluorouracil toxicity. Clin Cancer Res 9:4363–4367Google Scholar
  126. 126.
    Hamajima N, Kouwaki M, Vreken P et al. (1998) Dihydropyrimidinase deficiency: structural organization, chromosomal localization, and mutation analysis of the human dihydropyrimidinase gene. Am J Hum Genet 63:717–726Google Scholar
  127. 127.
    Putman CW, Rotteveel JJ, Wevers RA et al. (1997) Dihydropyrimidinase deficiency: a progressive neurological disorder? Neuropediatrics 28:106–110Google Scholar
  128. 128.
    Assmann B, Göhlich G, Baethman M et al. (2006) Clinical findings and a therapeutic trial in the first patient with beta-ureidopropionase deficiency. Neuropediatrics 37:20–25Google Scholar
  129. 129.
    Van Kuilenburg AB, Meinsma R, Beke E et al. (2004) Beta-ureidopropionase deficiency: an inborn error or pyrimidine degradation associated with neurological abnormalities. Hum Mol Genet 13:2793–2801Google Scholar
  130. 130.
    Yaplito-Lee J, Pitt J, Meiijer J et al. (2008) Beta-ureidopropionase deficiency presenting with congenital anomalies of the urogenital and colorectal systems. Mol Genet Metab 93:190–194Google Scholar
  131. 131.
    Van Kuilenburg ABP, Dobritzsch D, Meijer J et al. (2012) Beta-Ureidopropionase deficiency, Phenotype, genotype and protein structural consequences in 16 patients. Biochim Biophys Acta 1822:1096–1108Google Scholar
  132. 132.
    Assmann BE, van Kuilenburg AB, Distelmaier F et al. (2006b) Beta-ureidopopionase deficiency presenting with febrile status epilepticus. Epilepsia 47:215–217Google Scholar
  133. 133.
    Nakajima Y, Meijer J, Dobritzsch D et al. (2014) Clinical, biochemical cand molecular analysis of 12 Japanese patients with beta-ureidopropionase deficiency demonstrates high prevalence of the p.977G>A (p.R326Q) mutation. J Inher Metab Dis 37:801–812Google Scholar
  134. 134.
    Kölker S, Okun JG, Hörster F et al. (2001) 3-Ureidopropionate contributes to the neuropathology of 3-ureidopropionase deficiency and severe propionic aciduria: a hypothesis. J Neurosci Res 66:666–673Google Scholar
  135. 135.
    Zanella A, Bianchi P, Fermo E, Valentini G (2006) Hereditary pyrimidine 5’-nucleotidase deficiency: from genetics to clinical manifestations. Br J Haemat 133:113–123Google Scholar
  136. 136.
    Page T, Yu A, Fontanesi J, Nyhan WL (1997) Developmental disorder associated with increased cellular nucleotidase activity. Proc Natl Acad Sci USA 94:11601–11606Google Scholar
  137. 137.
    Nishino I, Spinazzola A, Papadimitriou A et al. (2000) MNGIE: an autosomal recessive disorder due to thymidine phosphorylase mutations. Ann Neurol 47:792–800Google Scholar
  138. 138.
    Halter J, Schüpbach WM, Casali C et al. (2011) Allogeneic hematopoietic SCT as treatment option for patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): a consensus conference proposal for a standardized approach. Bone Marrow Tranplant 46(3):330–337Google Scholar
  139. 139.
    Filosto M, Scarpelli M, Tonin P et al. (2012) Course and management of allogeneic stem cell transplantation in patients with mitochondrial neurogastrointestinal encephalomyopathy. J Neurol 259:2699–2706Google Scholar
  140. 140.
    Bax BE, Bain MD, Scarpelli M, Filosto M, Tonin P, Moran N (2013) Clinical and biochemical improvements in a patient with MNGIE following enzyme replacement. Neurology 81:1269–1271Google Scholar
  141. 141.
    Ciccolini J, Dahan L, André N et al. (2010) Cytidine deaminase residual activity in serum is a predictive marker of early severe toxicities in adults after gemcitabine-based chemotherapies. J Clin Oncol 28:160–165Google Scholar
  142. 142.
    Revy P, Muto T, Levy Y et al. (2000) Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102:565–575Google Scholar
  143. 143.
    Quartier P, Bustamante J, Sanal O et al. (2004) Clinical, immunologic and genetic analysis of 29 patients with autosomal recesive hyper-IgM syndrome due to activation-induced cytidine deaminase deficiency. Clin Immunol 110:22–29Google Scholar
  144. 144.
    Mahdaviani SA, Hirbod-Mobarakeh A, Wang N et al. (2012) Novel mutation of the activation-induced cytidine deaminase gene in a Tajik family: special review on hyper-immunoglobulin M syndrome. Expert Rev Clin Immunol 8:539–46Google Scholar
  145. 145.
    Saada A, Shaag A, Mandel H et al. (2001) Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet 29:342–344Google Scholar
  146. 146.
    Oskoui M, Davidzon G, Pascual J et al. (2006) Clinical spectrum of mitochondrial DNA depletion due to mutations in the thymidine kinase 2 gene. Arch Neurol 63:1122–1126Google Scholar
  147. 147.
    Lesko N, Naess K, Wibom R et al. (2010) Two novel mutations in thymidine kinase-2 cause early onset fatal encephalomyopathy and severe mtDNA depletion. Neuromusc Dis 20:198–203Google Scholar
  148. 148.
    Koch J, Mayr JA, Alhaddad B et al. (2016) CAD Mutations and Uridine-Responsive Epileptic Encephalopathy (under review)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratory for Inherited Metabolic DiseasesSaint-Luc University Hospital, University of Louvain Medical SchoolBrusselsBelgium
  2. 2.Laboratory of Physiological Chemistry, de Duve InstituteUniversity of Louvain Medical SchoolBrusselsBelgium
  3. 3.Laboratory for Inherited Metabolic DiseasesSaint-Luc University Hospital, University of Louvain Medical SchoolBrusselsFrance

Personalised recommendations