Skip to main content

Disorders of Intracellular Triglyceride and Phospholipid Metabolism

  • Chapter
Inborn Metabolic Diseases

Zusammenfassung

Acylglycerols and phospholipids play a myriad of organ-specific roles in cell structure, biochemistry and signalling. Inborn errors of glycerolipid metabolism cause a correspondingly vast array of clinical phenotypes. Molecular analysis is currently the principal diagnostic technique. Next generation sequencing has recently led to the discovery of several genetic defects of the biosynthesis and remodelling of triglycerides, other acylglycerols and of PLs. Few disorders of glycerolipid metabolism have distinct metabolite patterns by conventional techniques, but lipidomic analysis is a promising new approach that may expand the role of biochemical diagnosis. The discovery of many new inborn errors of glycerolipid metabolism offers unprecedented opportunities for clinical description and for rethinking clinical intervention. Some of these conditions produce striking clinical syndromes identifiable in infancy; others, mildly atypical forms of common adult conditions like metabolic syndrome and type II diabetes. Inborn errors of intracellular TG metabolism, reviewed in, often affect adipose tissue, but non-adipose signs can dominate their clinical presentation. Disorders of extracellular TG-containing lipoproteins are discussed in Chapter 31. Inborn errors of PL metabolism often affect the central and peripheral nervous systems, but also muscle, eye, skin, bone, cartilage, liver, kidney and immune system. Here we summarize the current clinical understanding of inborn errors of glycerolipid metabolism, recognizing that to date many of the conditions are only partially described in small numbers of patients and that some steps of glycerolipid metabolism are not yet associated with an inborn error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu JW, Yang H, Wang SP et al. (2015) Inborn errors of cytoplasmic triglyceride metabolism. J Inherit Metab Dis 38:85–98

    Google Scholar 

  2. Lamari F, Mochel F, Saudubray JM (2015) An overview of inborn errors of complex lipid biosynthesis and remodelling. J Inherit Metab Dis 38:3–18

    Google Scholar 

  3. Colsch B, Seyer A, Boudah S et al. (2015) Lipidomic analysis of cerebrospinal fluid by mass spectrometry-based methods. J Inherit Metab Dis 38:53–64

    Google Scholar 

  4. Vaz FM, Pras-Raves M, Bootsma AH, van Kampen AH (2015) Principles and practice of lipidomics. J Inherit Metab Dis 38:41–52

    Google Scholar 

  5. Garcia-Cazorla À, Mochel F, Lamari F, Saudubray JM (2015) The clinical spectrum of inherited diseases involved in the synthesis and remodeling of complex lipids. A tentative overview. J Inherit Metab Dis 38:19–40

    Google Scholar 

  6. Basel-Vanagaite L, Zevit N, Har Zahav A et al. (2012) Transient infantile hypertriglyceridemia, fatty liver, and hepatic fibrosis caused by mutated GPD1, encoding glycerol-3-phosphate dehydrogenase 1. Am J Hum Genet 90:49–60

    Google Scholar 

  7. Vigouroux C, Caron-Debarle M, Le Dour C et al. (2011) Molecular mechanisms of human lipodystrophies: from adipocyte lipid droplet to oxidative stress and lipotoxicity. Int Biochem Cell Biol 43:862–876

    Google Scholar 

  8. Magre J, Delepine M, Khallouf E et al. (2001) Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28:365–370

    Google Scholar 

  9. Simha V, Garg A (2003) Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or seipin genes. J Clin Endocrinol Metabol 88:5433–5437

    Google Scholar 

  10. Ebihara K, Kusakabe T, Hirata M et al. (2007) Efficacy and safety of leptin-replacement therapy and possible mechanisms of leptin actions in patients with generalized lipodystrophy. J Clin Endocrinol Metabol 92:532–541

    Google Scholar 

  11. Harris TE, Finck BN (2011) Dual function lipin proteins and glycerolipid metabolism. Trends Endocrinol Metab 22:226–233

    Google Scholar 

  12. Michot C, Hubert L, Brivet M et al. (2010) LPIN1 gene mutations: a major cause of severe rhabdomyolysis in early childhood. Hum Mutat 31:E1564–1573

    Google Scholar 

  13. Michot C, Hubert L, Romero NB et al. (2012) Study of LPIN1, LPIN2 and LPIN3 in rhabdomyolysis and exercise-induced myalgia. J Inherit Metab Dis 35:1119–1128

    Google Scholar 

  14. Kim HE, Bae E, Jeong DY et al. (2013) Lipin1 regulates PPARgamma transcriptional activity. Biochem J 453:49–60

    Google Scholar 

  15. Bergounioux J, Brassier A, Rambaud C et al. (2012) Fatal rhabdomyolysis in 2 children with LPIN1 mutations. J Pediatr 160:1052–1054

    Google Scholar 

  16. Michot C, Mamoune A, Vamecq J et al. (2013) Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts. Biochim Biophys Acta 1832:2103–2114

    Google Scholar 

  17. El-Shanti H, Ferguson P (2008) Majeed Syndrome. In: Pagon RA, Adam MP, Ardinger HH et al. (eds). Gene Reviews [Internet]. Seattle, Washington, University of Washington, Seattle, pp 1993–2015

    Google Scholar 

  18. Herlin T, Fiirgaard B, Bjerre M et al. (2013) Efficacy of anti-IL-1 treatment in Majeed syndrome. Ann Rheum Dis 72:410–413

    Google Scholar 

  19. Lemaire M, Frémeaux-Bacchi V, Schaefer F et al. (2013) Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet 45:531–536

    Google Scholar 

  20. Haas JT, Winter HS, Lim E et al. (2012) DGAT1 mutation is linked to a congenital diarrheal disorder. J Clin Invest 122:4680–4684

    Google Scholar 

  21. Gandotra S, Le Dour C, Bottomley W et al. (2011) Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med 364:740–748

    Google Scholar 

  22. Garg A, Peshock RM, Fleckenstein JL (1999) Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan variety). J Clin Endocrinol Metabol 84:170–174

    Google Scholar 

  23. Igal RA, Rhoads JM, Coleman RA (1997) Neutral lipid storage disease with fatty liver and cholestasis. J Pediatr Gastroenterol Nutrit 25:541–547

    Google Scholar 

  24. Fischer J, Lefevre C, Morava E et al. (2007) The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Gen 39:28–30

    Google Scholar 

  25. Israeli S, Pessach Y, Sarig O, Goldberg I, Sprecher E (2012) Beneficial effect of acitretin in Chanarin-Dorfman syndrome. Clin Exp Dermat 37:31–33

    Google Scholar 

  26. Mitra S, Samanta M, Sarkar M, Chatterjee S (2010) Dorfman-Chanarin syndrome: a rare neutral lipid storage disease. Indian J Pathol Microbiol 53:799–801

    Google Scholar 

  27. Bruno C, Bertini E, Di Rocco M et al. (2008) Clinical and genetic characterization of Chanarin-Dorfman syndrome. Biochem Biophys Res Comm 369:1125–1128

    Google Scholar 

  28. Laforet P, Vianey-Saban C (2010) Disorders of muscle lipid metabolism: diagnostic and therapeutic challenges. Neuromusc Dis 20:693–700

    Google Scholar 

  29. Rizzo WB, Jenkens SM, Boucher P (2012) Recognition and diagnosis of neuro-ichthyotic syndromes. Semin Neurol 32:75–84

    Google Scholar 

  30. Srinivasaraghavan R, Krishnamurthy S, Chandar R et al. (2013) Acitretin-Responsive Ichthyosis in Chanarin-Dorfman Syndrome with a Novel Mutation in the ABHD5/CGI-58 Gene. Pediatr Dermatol 31:612–614

    Google Scholar 

  31. Hirano K, Ikeda Y, Zaima N, Sakata Y, Matsumiya G (2008) Triglyceride deposit cardiomyovasculopathy. N Engl J Med 359:2396–2398

    Google Scholar 

  32. Reilich P, Horvath R, Krause S et al. (2011) The phenotypic spectrum of neutral lipid storage myopathy due to mutations in the PNPLA2 gene. J Neurol 258:1987–1997

    Google Scholar 

  33. Natali A, Gastaldelli A, Camastra S et al. (2013) Metabolic consequences of adipose triglyceride lipase deficiency in humans: an in vivo study in patients with neutral lipid storage disease with myopathy. J Clin Endocrinol Metabol 98:E1540–1548

    Google Scholar 

  34. Janssen MC, van Engelen B, Kapusta L et al. (2013) Symptomatic lipid storage in carriers for the PNPLA2 gene. Eur J Hum Genet 21:807–815

    Google Scholar 

  35. van de Weijer T, Havekes B, Bilet L et al. (2013) Effects of bezafibrate treatment in a patient and a carrier with mutations in the PNPLA2 gene, causing neutral lipid storage disease with myopathy. Circ Res 112:e51–54

    Google Scholar 

  36. Wu JW, Wang SP, Casavant S et al. (2012) Fasting energy homeostasis in mice with adipose deficiency of desnutrin/adipose triglyceride lipase. Endocrinology 153:2198–2207

    Google Scholar 

  37. Albert JS, Yerges-Armstrong LM, Horenstein RB et al. (2014) Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. N Engl J Med 370:2307–2315

    Google Scholar 

  38. Mitsuhashi S, Hatakeyama H, Karahashi M et al. (2011) Muscle choline kinase beta defect causes mitochondrial dysfunction and increased mitophagy. Hum Mol Genet 20:3841–3851

    Google Scholar 

  39. Castro-Gago M, Dacruz-Alvarez D, Pintos-Martínez E et al. (2016) Congenital neurogenic muscular atrophy in megaconial myopathy due to a mutation in CHKB gene. Brain Dev 38:167–172

    Google Scholar 

  40. Sher RB, Aoyama C, Huebsch KA et al. (2006) A rostrocaudal muscular dystrophy caused by a defect in choline kinase beta, the first enzyme in phosphatidylcholine biosynthesis. J Biol Chem 281:4938–4948

    Google Scholar 

  41. Hoover-Fong J, Sobreira N, Jurgens J et al. (2014) Mutations in PCYT1A, encoding a key regulator of phosphatidylcholine metabolism, cause spondylometaphyseal dysplasia with cone-rod dystrophy. Am J Hum Genet 94:105–112

    Google Scholar 

  42. Yamamoto GL, Wagner ARB, Almeida TF, Lazar et al. (2014) Mutations in PCYT1A Cause Spondylometaphyseal Dysplasia with Cone-Rod Dystrophy, Am J Hum Genet 94:113–119

    Google Scholar 

  43. Payne F, Lim K, Girousse A, Brown RJ et al. (2014) Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. Proc Natl Acad Sci USA 111:8901–8906

    Google Scholar 

  44. Merolli A, Santin M (2009) Role of phosphatidyl-serine in bone repair and its technological exploitation. Molecules 14:5367–5381

    Google Scholar 

  45. Sousa SB, Jenkins D, Chanudet E et al. (2014) Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome. Nat Genet 46:70–77

    Google Scholar 

  46. Vance JE, Tasseva G (2013) Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim Biophys Acta 1831:543–554

    Google Scholar 

  47. Whyte MP, Blythe A, McAlister WH et al. (2015) Lenz-Majewski hyperostotic dwarfism with hyperphosphoserinuria from a novel mutation in PTDSS1 encoding phosphatidylserine synthase 1. J Bone Miner Res 30:606–614

    Google Scholar 

  48. Sengers RCA, ter Haar BGA, Trijbels JM et al. (1975) Congenital cataract and mitochondrial myopathy of skeletal and heart muscle associated with lactic acidosis after exercise. J Pediatr 86:873–880

    Google Scholar 

  49. Mayr JA, Haack TB, Graf E et al. (2012) Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome. Am J Hum Genet 90:314–320

    Google Scholar 

  50. Aldahmesh MA, Khan AO, Mohamed JY et al. (2012) Identification of a truncation mutation of acylglycerol kinase (AGK) gene in a novel autosomal recessive cataract locus. Hum Mutat 33:960–962

    Google Scholar 

  51. Haghighi A, Haack TB, Atiq M et al. (2014) Sengers syndrome: six novel AGK mutations in seven new families and review of the phenotypic and mutational spectrum of 29 patients. Orphanet J Rare Dis 20 9:119

    Google Scholar 

  52. Barth, PG, Valianpour F, Bowen VM et al. (2004) X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): an update. Am J Med Genet 126A:349–354

    Google Scholar 

  53. Kelley RI, Cheatham JP, Clark BJ, Nigro et al. (1991) X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria. J Pediatr 119:738–747

    Google Scholar 

  54. Houtkooper RH, Turkenburg M, Poll-The BT (2009) The enigmatic role of tafazzin in cardiolipin metabolism. Biochim Biophys Acta 1788:2003–2014

    Google Scholar 

  55. Johnston J, Kelley RI, Feigenbaum A et al. (1997) Mutation characterization and genotype-phenotype correlation in Barth syndrome. Am J Hum Genet 5:1053–1058

    Google Scholar 

  56. Wortmann SB, Espeel M, Almeida L et al. (2015) Inborn errors of metabolism in the biosynthesis and remodelling of phospholipids. J Inherit Metab Dis 38:99–110

    Google Scholar 

  57. Kulik W, van Lenthe H, Stet FSRH (2008) Bloodspot assay using HPLC-tandem mass spectrometry for detection of Barth syndrome. Clin Chem 54:371–378

    Google Scholar 

  58. Wortmann SB, Vaz FM, Gardeitchik T, Vissers LE et al. (2012) Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat Genet 44:797–802

    Google Scholar 

  59. Sarig O, Goldsher D, Nousbeck J et al. (2013) Infantile mitochondrial hepatopathy is a cardinal feature of MEGDEL syndrome (3-methylglutaconic aciduria type IV with sensorineural deafness, encephalopathy and Leigh-like syndrome) caused by novel mutations in SERAC1. Am J Med Genet A 161A:2204–2215

    Google Scholar 

  60. Saunders CJ, Moon SH, Liu X et al. (2015) Loss of function variants in human PNPLA8 encoding calcium-independent phospholipase A2 γ recapitulate the mitochondriopathy of the homologous null mouse. Hum Mutat 36:301–306

    Google Scholar 

  61. Fiskerstrand T, Knappskog P, Majewski J et al. (2009) A novel Refsum-like disorder that maps to chromosome 20. Neurology 72:20–27

    Google Scholar 

  62. Fiskerstrand T, H’mida-Ben Brahim D, Johansson S et al. (2010) Mutations in ABHD12 Cause the Neurodegenerative Disease PHARC: an inborn error of endocannabinoid metabolism. Am J Hum Gen 87:410–417

    Google Scholar 

  63. Nishiguchi KM, Avila-Fernandez A, van Huet RA et al. (2014) Exome sequencing extends the phenotypic spectrum for abhd12 mutations: from syndromic to nonsyndromic retinal degeneration. Ophthalmology 121:1620–1627

    Google Scholar 

  64. Wang J, Ueda N (2009) Biology of endocannabinoid synthesis system. Prostagland Other Lipid Mediat 89:112–119

    Google Scholar 

  65. Blankman JL, Long JZ, Trauger SA et al. (2013) ABHD12 controls brain lysophosphatidylserine pathways that are deregulated in a murine model of the neurodegenerative disease PHARC. Proc Natl Acad Sci USA 22:1500–1505

    Google Scholar 

  66. Aicardi J, Castelein P (1979) Infantile neuroaxonal dystrophy. Brain 102:727–748

    Google Scholar 

  67. Nardocci N, Zorzi G, Farina L et al. (1999) Infantile neuroaxonal dystrophy: clinical spectrum and diagnostic criteria. Neurology 52:1472–1478

    Google Scholar 

  68. Yoshino H, Tomiyama H, Tachibana N et al. (2010) Phenotypic spectrum of patients with PLA2G6 mutation and PARK14-linked parkinsonism. Neurology 75:1356–1361

    Google Scholar 

  69. Paisàn-Ruiz C, Guevara R, Federoff M et al. (2010) Early-onset L-Dopa-responsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBOX7 and Spatacsin mutations, Mov Disord 25:1791–1800

    Google Scholar 

  70. Morgan NV, Westaway SK, Morton JE et al. (2006) PLA2G6, encoding a phospholipase A(2), is mutated in neurodegenerative disorders with high brain iron. Nat Genet 38:752–754

    Google Scholar 

  71. Khateeb S, Flusser H, Ofir R et al. (2006) PLA2G6 Mutation Underlies Infantile Neuroaxonal Dystrophy. Am J Hum Genet 79:942–948

    Google Scholar 

  72. Engel LA, Jing Z, O’Brien DE, Sun M, Kotzbauer PT (2010) Catalytic function of PLA2G6 is impaired by mutations associated with infantile neuroaxonal dystrophy but not dystonia-parkinsonism. PLoS One 5:e12897

    Google Scholar 

  73. Rainier S, Bui M, Mark E, Thomas D et al. (2008) Neuropathy target esterase gene mutations cause motor neuron disease. Am J Hum Genet 82:780–785

    Google Scholar 

  74. Synofzik M, Gonzalez MA, Lourenco CM et al. (2014) PNPLA6 mutations cause Boucher-Neuhauser and Gordon Holmes syndromes as part of a broad neurodegenerative spectrum. Brain 137:69–77

    Google Scholar 

  75. Hufnagel RB, Arno G, Hein ND et al. (2015) Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes. J Med Genet 52:85–94

    Google Scholar 

  76. Chang PA, Wu YJ (2010) Neuropathy target esterase: an essential enzyme for neural development and axonal maintenance. Int J Biochem Cell Biol 42:573–575

    Google Scholar 

  77. Tesson C, Nawara M, Salih MA et al. (2012) Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. Am J Hum Genet 91:1051–1064

    Google Scholar 

  78. Doi H, Ushiyama M, Baba T et al. (2014) Late-onset spastic ataxia phenotype in a patient with a homozygous DDHD2 mutation. Sci Rep 24;4:7132

    Google Scholar 

  79. Schuurs-Hoeijmakers JH, Vulto-van Silfhout AT, Vissers LE et al. (2013) Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing. J Med Genet 50:802–811

    Google Scholar 

  80. Liguori R, Giannoccaro MP, Arnoldi A et al. (2014) Impairment of brain and muscle energy metabolism detected by magnetic resonance spectroscopy in hereditary spastic paraparesis type 28 patients with DDHD1 mutations. J Neurol 261:1789–1793

    Google Scholar 

  81. Inloes JM, Hsu KL, Dix MM, Viader et al. (2014) The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase. Proc Natl Acad Sci USA 111:14924–14929

    Google Scholar 

  82. Balla T (2013) Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137

    Google Scholar 

  83. Waugh MG (2015) PIPs in neurological diseases. Biochim Biophys Acta 1851:1066–1082

    Google Scholar 

  84. Dionisi-Vici C, Shteyer E, Niceta M et al. (2016) Expanding the molecular diversity and phenotypic spectrum of glycerol 3-phosphate dehydrogenase 1 deficiency. J Inherit Metab Dis 39:689–695

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Foudil Lamari , Jean-Marie Saudubray or Grant A. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lamari, F., Saudubray, JM., Mitchell, G.A. (2016). Disorders of Intracellular Triglyceride and Phospholipid Metabolism. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics