Advertisement

Entanglement and Locality Restrictions

  • Masahito Hayashi
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

Quantum mechanics violates daily intuition not only because the measured outcome can only be predicted probabilistically but also because of a quantum-specific correlation called entanglement. It is believed that this type of correlation does not exist in macroscopic objects. Entanglement can be used to produce nonlocal phenomena. States possessing such correlations are called entangled states (or states that possess entanglement). A state on a bipartite system is called called a maximally entangled state or an EPR state when it has the highest degree of entanglement among these states. Historically, the idea of a nonlocal effect due to entanglement was pointed out by Einstein, Podolsky, and Rosen; hence, the name EPR state. In order to transport a quantum state over a long distance, we have to retain its coherence during its transmission. However, it is often very difficult because the transmitted system can be easily correlated with the environment system. If the sender and receiver share an entangled state, the sender can transport his/her quantum state to the receiver without transmitting it, as explained in Chap.  9. This protocol is called quantum teleportation and clearly explains the effect of entanglement in quantum systems. Many other effects of entanglement have also been examined, some of which are given in Chap.  9. However, it is difficult to take advantage of entanglement if the shared state is insufficiently entangled. Therefore, we investigate how much of a maximally entangled state can be extracted from a state with a partially entangled state. Of course, if we allow quantum operations between two systems, we can always produce maximally entangled states. Therefore, we examine cases where locality conditions are imposed to our possible operations.

References

  1. 1.
    V. Vedral, M.B. Plenio, Entanglement measures and purification procedures. Phys. Rev. A 57, 822 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    H.-K. Lo, S. Popescu, Concentrating entanglement by local actions: beyond mean values. Phys. Rev. A 63, 022301 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    A. Uhlmann, The ‘transition probability’ in the state space of *-algebra. Rep. Math. Phys. 9, 273–279 (1976)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  5. 5.
    B. Schumacher, Sending quantum entanglement through noisy channels. Phys. Rev. A 54, 2614–2628 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    H. Barnum, E. Knill, M.A. Nielsen, On quantum fidelities and channel capacities. IEEE Trans. Inf. Theory 46, 1317–1329 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    M. Hamada, Lower bounds on the quantum capacity and highest error exponent of general memoryless channels. IEEE Trans. Inf. Theory 48, 2547–2557 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    C. Adami, N.J. Cerf, On the von Neumann capacity of noisy quantum channels. Phys. Rev. A 56, 3470 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    B. Schumacher, M.A. Nielsen, Quantum data processing and error correction. Phys. Rev. A 54, 2629 (1996)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    H. Barnum, M.A. Nielsen, B. Schumacher, Information transmission through a noisy quantum channel. Phys. Rev. A 57, 4153–4175 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    A.S. Holevo, On entanglement-assisted classical capacity. J. Math. Phys. 43, 4326–4333 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    R. Bhatia, Matrix Analysis (Springer, Berlin, 1997)CrossRefzbMATHGoogle Scholar
  13. 13.
    M.A. Nielsen, J. Kempe, Separable states are more disordered globally than locally. Phys. Rev. Lett. 86, 5184–5187 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    N.J. Cerf, C. Adami, Negative entropy and information in quantum mechanics. Phys. Rev. Lett. 79, 5194 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    M.A. Nielsen, Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    G. Vidal, Entanglement of pure states for a single copy. Phys. Rev. Lett. 83, 1046–1049 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    G. Vidal, D. Jonathan, M.A. Nielsen, Approximate transformations and robust manipulation of bipartite pure state entanglement. Phys. Rev. A 62, 012304 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    T. Yamamoto, M. Koashi, Ş. Özdemir, N. Imoto, Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    J.-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    X. Wang, H. Fan, Non-post-selection entanglement concentration by ordinary linear optical devices. Phys. Rev. A 68, 060302(R) (2003)CrossRefGoogle Scholar
  21. 21.
    M. Hayashi, General formulas for fixed-length quantum entanglement concentration. IEEE Trans. Inf. Theory 52, 1904–1921 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    M. Hayashi, K. Matsumoto, Variable length universal entanglement concentration by local operations and its application to teleportation and dense coding. quant-ph/0109028 (2001); K. Matsumoto, M. Hayashi, Universal entanglement concentration. Phys. Rev. A 75, 062338 (2007)Google Scholar
  24. 24.
    M. Horodecki, P. Horodecki, R. Horodecki, General teleportation channel, singlet fraction and quasi-distillation. Phys. Rev. A 60, 1888 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    M. Hayashi, M. Koashi, K. Matsumoto, F. Morikoshi A. Winter, Error exponents for entangle concentration. J. Phys. A Math. Gen. 36, 527–553 (2003)Google Scholar
  26. 26.
    F. Morikoshi, M. Koashi, Deterministic entanglement concentration. Phys. Rev. A 64, 022316 (2001)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    F. Morikoshi, Recovery of entanglement lost in entanglement manipulation. Phys. Rev. Lett. 84, 3189 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    P.M. Hayden, M. Horodecki, B.M. Terhal, The asymptotic entanglement cost of preparing a quantum state. J. Phys. A Math. Gen. 34, 6891–6898 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    B.M. Terhal, P. Horodecki, A Schmidt number for density matrices. Phys. Rev. A 61, 040301(R) (2000)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    G. Vidal, W. Dür, J.I. Cirac, Entanglement cost of antisymmetric states. quant-ph/0112131v1 (2001)Google Scholar
  32. 32.
    M. Donald, M. Horodecki, O. Rudolph, The uniqueness theorem for entanglement measures. J. Math. Phys. 43, 4252–4272 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    M.J. Donald, M. Horodecki, Continuity of relative entropy of entanglement. Phys. Lett. A 264, 257–260 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    M. Christandl, A. Winter, Squashed entanglement-an additive entanglement measure. J. Math. Phys. 45, 829–840 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    M.A. Nielsen, Continuity bounds for entanglement. Phys. Rev. A 61, 064301 (2000)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    K. Matsumoto, T. Shimono, A. Winter, Remarks on additivity of the Holevo channel capacity and of the entanglement of formation. Commun. Math. Phys. 246(3), 427–442 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    K.G.H. Vollbrecht, R.F. Werner, Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    T. Hiroshima, M. Hayashi, Finding a maximally correlated state-simultaneous Schmidt decomposition of bipartite pure states. Phys. Rev. A 70, 030302(R) (2004)ADSCrossRefGoogle Scholar
  39. 39.
    H.-K. Lo, S. Popescu, Classical communication cost of entanglement manipulation: is entanglement an interconvertible resource? Phys. Rev. Lett. 83, 1459 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    B.M. Terhal, M. Horodecki, D.W. Leung, D.P. DiVincenzo, The entanglement of purification. J. Math. Phys. 43, 4286 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    L. Henderson, V. Vedral, Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    M. Koashi, A. Winter, Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    M. Christandl, A. Winter, Uncertainty, monogamy, and locking of quantum correlations. IEEE Trans. Inf. Theory 51, 3159–3165 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    A. Winter, Secret, public and quantum correlation cost of triples of random variables, in Proceedings 2005 IEEE International Symposium on Information Theory (2005), p. 2270Google Scholar
  45. 45.
    E.M. Rains, A semidefinite program for distillable entanglement. IEEE Trans. Inf. Theory 47, 2921–2933 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    J.I. Cirac, W. Dür, B. Kraus, M. Lewenstein, Entangling operations and their implementation using a small amount of entanglement. Phys. Rev. Lett. 86, 544 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    K. Audenaert, M.B. Plenio, J. Eisert, Entanglement cost under positive-partial-transpose-preserving operations. Phys. Rev. Lett. 90, 027901 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    S. Ishizaka, Binegativity and geometry of entangled states in two states. Phys. Rev. A 69, 020301(R) (2004)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    M. Horodecki, P. Horodecki, R. Horodecki, Mixed-state entanglement and quantum communication, in Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer Tracts in Modern Physics, 173), G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rotteler, H. Weinfurter, R. Werner, A. Zeilinger (eds.), (Springer, Berlin Heidelberg New York, 2001)Google Scholar
  50. 50.
    M. Horodecki, P. Horodecki, R. Horodecki, Mixed-state entanglement and distillation: is there a “bound” entanglement in nature? Phys. Rev. Lett. 80, 5239 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    M. Horodecki, P. Horodecki, Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    T. Hiroshima, Majorization criterion for distillability of a bipartite quantum state. Phys. Rev. Lett. 91, 057902 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    W. Dür, J.I. Cirac, M. Lewenstein, D. Bruß, Distillability and partial transposition in bipartite systems. Phys. Rev. A 61, 062313 (2000)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    N.J. Cerf, C. Adami, R.M. Gingrich, Reduction criterion for separability. Phys. Rev. A 60, 898 (1999)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    D. Yang, M. Horodecki, R. Horodecki, B. Synak-Radtke, Irreversibility for all bound entangled state. Phys. Rev. Lett. 95, 190501 (2005)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    L. Masanes, All entangled states are useful for information processing. Phys. Rev. Lett. 96, 150501 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    S. Ishizaka, T. Hiroshima, Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 62, 022310 (2000)ADSCrossRefGoogle Scholar
  59. 59.
    S. Lloyd, The capacity of the noisy quantum channel. Phys. Rev. A 56, 1613 (1997)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    M. Fukuda, Revisiting additivity violation of quantum channels. Commun. Math. Phys. 332, 713–728 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    M.B. Hastings, Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5, 255 (2009)CrossRefGoogle Scholar
  62. 62.
    M. Hayashi, Security analysis of \(\varepsilon \)-almost dual universal\(_2\) hash functions: smoothing of min entropy vs. smoothing of Rényi entropy of order 2 (2013). IEEE Trans. Inf. Theory 62, 3451–3476 (2016)Google Scholar
  63. 63.
    L. Carter, M. Wegman, Universal classes of hash functions. J. Comput. Sys. Sci. 18, 143–154 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    H. Krawczyk, LFSR-based hashing and authentication, in Advances in Cryptology — CRYPTO ’94, Lecture Notes in Computer Science, vol. 839 (Springer-Verlag, 1994), pp. 129–139Google Scholar
  65. 65.
    M. Hayashi, Precise evaluation of leaked information with secure randomness extraction in the presence of quantum attacker. Commun. Math. Phys. 333(1), 335–350 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    R. Ahlswede, I. Csiszár, Common randomness in information theory and cryptography part 1: Secret sharing. IEEE Trans. Inform. Theory 39, 1121–1132 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    I. Devetak, A. Winter, Distillation of secret key and entanglement from quantum states. Proc. R. Soc. Lond. A 461, 207–235 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    R. Renner, Security of quantum key distribution, PhD thesis, Dipl. Phys. ETH, Switzerland, 2005; arXiv:quantph/0512258; Int. J. Quant. Inf. 6, 1–127 (2008)
  69. 69.
    M. Hayashi, Exponential decreasing rate of leaked information in universal random privacy amplification. IEEE Trans. Inf. Theory 57, 3989–4001 (2011)MathSciNetCrossRefGoogle Scholar
  70. 70.
    J.M. Renes, Duality of privacy amplification against quantum adversaries and data compression with quantum side information. Proc. Roy. Soc. A 467(2130), 1604–1623 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  72. 72.
    F. Verstraete, J. Dehaene, B. DeMorr, Local filtering operations on two qubits. Phys. Rev. A 64, 010101(R) (2001)ADSCrossRefGoogle Scholar
  73. 73.
    N. Linden, S. Massar, S. Popescu, Purifying noisy entanglement requires collective measurements. Phys. Rev. Lett. 81, 3279 (1998)ADSCrossRefGoogle Scholar
  74. 74.
    A. Kent, N. Linden, S. Massar, Optimal entanglement enhancement for mixed states. Phys. Rev. Lett. 83, 2656 (1999)ADSCrossRefGoogle Scholar
  75. 75.
    E.M. Rains, Bound on distillable entanglement. Phys. Rev. A 60, 179–184 (1999)ADSMathSciNetCrossRefGoogle Scholar
  76. 76.
    K. Audenaert, J. Eisert, E. Jané, M.B. Plenio, S. Virmani, B. De Moor, The asymptotic relative entropy of entanglement. Phys. Rev. Lett. 87, 217902 (2001)ADSCrossRefGoogle Scholar
  77. 77.
    F. Yura, Entanglement cost of three-level antisymmetric states. J. Phys. A Math. Gen. 36, L237–L242 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    K. Matsumoto, F. Yura, Entanglement cost of antisymmetric states and additivity of capacity of some quantum channel. J. Phys. A: Math. Gen. 37, L167–L171 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    C. King, The capacity of the quantum depolarizing channel. IEEE Trans. Inf. Theory 49, 221–229 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    B.M. Terhal, K.G.H. Vollbrecht, Entanglement of formation for isotropic states. Phys. Rev. Lett. 85, 2625 (2000)ADSCrossRefGoogle Scholar
  81. 81.
    M. Horodecki, P. Horodecki, R. Horodecki, Unified approach to quantum capacities: towards quantum noisy coding theorem. Phys. Rev. Lett. 85, 433–436 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    I. Devetak, The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51, 44–55 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    P. Hayden, A. Winter, On the communication cost of entanglement transformations. Phys. Rev. A 67, 012326 (2003)ADSCrossRefGoogle Scholar
  84. 84.
    A. Harrow, H.K. Lo, A tight lower bound on the classical communication cost of entanglement dilution. IEEE Trans. Inf. Theory 50, 319–327 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    A.D. Wyner, The common information of two dependent random variables. IEEE Trans. Inf. Theory 21, 163–179 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    M. Owari, K. Matsumoto, M. Murao, Entanglement convertibility for infinite dimensional pure bipartite states. Phys. Rev. A 70, 050301 (2004); quant-ph/0406141; Existence of incomparable pure bipartite states in infinite dimensional systems. quant-ph/0312091 (2003)Google Scholar
  87. 87.
    A. Miyake, Classification of multipartite entangled states by multidimensional determinants. Phys. Rev. A 67, 012108 (2003)ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    S. Ishizaka, Bound entanglement provides convertibility of pure entangled states. Phys. Rev. Lett. 93, 190501 (2004)ADSCrossRefGoogle Scholar
  89. 89.
    A. Datta, A condition for the nullity of quantum discord (2010). arXiv:1003.5256
  90. 90.
    B. Dakic, V. Vedral, C. Brukner, Necessary and sufficient condition for non-zero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefzbMATHGoogle Scholar
  91. 91.
    T. Shimono, Additivity of entanglement of formation of two three-level-antisymmetric states. Int. J. Quant. Inf. 1, 259–268 (2003)CrossRefzbMATHGoogle Scholar
  92. 92.
    T. Shimono, H. Fan, Numerical test of the superadditivity of entanglement of formation for four-partite qubits, in Proceedings ERATO Conference on Quantum Information Science (EQIS) 2003, 119–120 (2003)Google Scholar
  93. 93.
    C.H. Bennett, G. Brassard, C. Crepeau, U.M. Maurer, Generalized privacy amplification. IEEE Trans. Inform. Theory 41, 1915–1923 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    J. Håstad, R. Impagliazzo, L.A. Levin, M. Luby, A pseudorandom generator from any one-way function. SIAM J. Comput. 28, 1364 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  95. 95.
    M. Hayashi, V.Y.F. Tan, Equivocations, exponents and second-order coding rates under various renyi information measures (2015). arXiv:1504.02536

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Graduate School of MathematicsNagoya UniversityNagoyaJapan

Personalised recommendations