FACT: A Probabilistic Model Checker for Formal Verification with Confidence Intervals

  • Radu CalinescuEmail author
  • Kenneth Johnson
  • Colin Paterson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9636)


We introduce FACT, a probabilistic model checker that computes confidence intervals for the evaluated properties of Markov chains with unknown transition probabilities when observations of these transitions are available. FACT is unaffected by the unquantified estimation errors generated by the use of point probability estimates, a common practice that limits the applicability of quantitative verification. As such, FACT can prevent invalid decisions in the construction and analysis of systems, and extends the applicability of quantitative verification to domains in which unknown estimation errors are unacceptable.


  1. 1.
    Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked. FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Calinescu, R., Ghezzi, C., Johnson, K., Pezze, M., Rafiq, Y., Tamburrelli, G.: Formal verification with confidence intervals to establish quality of service properties of software systems. IEEE Trans. Reliab. PP(99), 1–16 (2015)Google Scholar
  3. 3.
    Calinescu, R., Johnson, K., Rafiq, Y.: Developing self-verifying service-based systems. In: ASE 2013, pp. 734–737 (2013)Google Scholar
  4. 4.
    Calinescu, R., Rafiq, Y., Johnson, K., Bakir, M.E.: Adaptive model learning for continual verification of non-functional properties. In: ICPE 2014, pp. 87–98 (2014)Google Scholar
  5. 5.
    Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J.-P., Ábrahám, E.: PROPhESY: A PRObabilistic ParamEter SYnthesis Tool. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  6. 6.
    Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for parametric Markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects Comput. 6(5), 512–535 (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    Haverkort, B.R., Katoen, J.-P., Larsen, K.G.: Quantitative verification in practice. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 127–127. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104 (2011)CrossRefGoogle Scholar
  10. 10.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Kwiatkowska, M.Z.: Quantitative verification: models, techniques and tools. In: ESEC-FSE 2007, pp. 449–458 (2007)Google Scholar
  12. 12.
    Kwong, K.-S., Iglewicz, B.: On singular multivariate normal distribution and its applications. Comput. Stat. Data Anal. 22(3), 271–285 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Löfberg, J.: Automatic robust convex programming. Optim. Methods Softw. 27(1), 115–129 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Norman, G., Parker, D.: Quantitative verification: formal guarantees for timeliness, reliability and performance. Technical report, London Mathematical Society and the Smith Institute for Industrial Mathematics and System Engineering (2014)Google Scholar
  15. 15.
    Su, G., Rosenblum, D.S.: Asymptotic bounds for quantitative verification of perturbed probabilistic systems. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS, vol. 8144, pp. 297–312. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Radu Calinescu
    • 1
    Email author
  • Kenneth Johnson
    • 2
  • Colin Paterson
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK
  2. 2.School of Computer and Mathematical SciencesAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations