Online and Compositional Learning of Controllers with Application to Floor Heating

  • Kim G. Larsen
  • Marius Mikučionis
  • Marco Muñiz
  • Jiří SrbaEmail author
  • Jakob Haahr Taankvist
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9636)


Controller synthesis for stochastic hybrid switched systems, like e.g. a floor heating system in a house, is a complex computational task that cannot be solved by an exhaustive search though all the control options. The state-space to be explored is in general uncountable due to the presence of continuous variables (e.g. temperature readings in the different rooms) and even after digitization, the state-space remains huge and cannot be fully explored. We suggest a general and scalable methodology for controller synthesis for such systems. Instead of off-line synthesis of a controller for all possible input temperatures and an arbitrary time horizon, we propose an on-line synthesis methodology, where we periodically compute the controller only for the near future based on the current sensor readings. This computation is itself done by employing machine learning in order to avoid enumeration of the whole state-space. For additional scalability we propose and apply a compositional synthesis approach. Finally, we demonstrate the applicability of the methodology to a concrete floor heating system of a real family house.


Model Predictive Control Linear Temporal Logic Controller Synthesis Home Automation Heat Exchange Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research leading to these results has received funding from the EU FP7 FET projects CASSTING and SENSATION, the project DiCyPS funded by the Innovation Fund Denmark, the Sino Danish Research Center IDEA4CPS and the ERC Advanced Grant LASSO. The fourth author is partially affiliated with FI MU, Brno, Czech Republic.


  1. 1.
    Caccamo, M., Frazzoli, E., Grosu, R. (eds.): Proceedings of the 14th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2011, Chicago, IL, USA, 12–14 April 2011. ACM (2011)Google Scholar
  2. 2.
    Camacho, E., Ramirez, D., Limon, D., de la Pea, D.M., Alamo, T.: Model predictive control techniques for hybrid systems. Ann. Rev. Control 34(1), 21–31 (2010). CrossRefGoogle Scholar
  3. 3.
    David, A., Du, D., Larsen, K.G., Mikučionis, M., Skou, A.: An evaluation framework for energy aware buildings using statistical model checking. SCIENCE CHINA Inf. Sci. 55(12), 2694–2707 (2012). CrossRefGoogle Scholar
  4. 4.
    David, A., Du, D., Guldstrand Larsen, K., Legay, A., Mikučionis, M.: Optimizing control strategy using statistical model checking. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 352–367. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sørensen, M.G., Taankvist, J.H.: On time with minimal expected cost!. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–211. Springer, Heidelberg (2015)Google Scholar
  7. 7.
    Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Hahn, E.M., Norman, G., Parker, D., Wachter, B., Zhang, L.: Game-based abstraction and controller synthesis for probabilistic hybrid systems. In: Eighth International Conference on Quantitative Evaluation of Systems, QEST 2011, Aachen, Germany, 5–8 September 2011, pp. 69–78. IEEE Computer Society (2011).
  9. 9.
    Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise control. In: Meyer, R., et al. (eds.) Olderog-Festschrift. LNCS, vol. 9360, pp. 260–277. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23506-6_17 CrossRefGoogle Scholar
  10. 10.
    Majumdar, R., Render, E., Tabuada, P.: Robust discrete synthesis against unspecified disturbances. In: Caccamo et al. [1], pp. 211–220.
  11. 11.
    Roy, P., Tabuada, P., Majumdar, R.: Pessoa 2.0: a controller synthesis tool for cyber-physical systems. In: Caccamo et al. [1], pp. 315–316.
  12. 12.
    Sørensen, M.G.: Automated controller synthesis in home automation. Master’s thesis, Computer Science, Aalborg University (2014)Google Scholar
  13. 13.
    Svoreňová, M., Křetínský, J., Chmelík, M., Chatterjee, K., Černá, I., Belta, C.: Temporal logic control for stochastic linear systems using abstraction refinement of probabilistic games. In: Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, pp. 259–268. HSCC 2015, ACM, New York, NY, USA (2015).
  14. 14.
    Wognsen, E.R., Haverkort, B.R., Jongerden, M., Hansen, R.R., Larsen, K.G.: A score function for optimizing the cycle-life of battery-powered embedded systems. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 305–320. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kim G. Larsen
    • 1
  • Marius Mikučionis
    • 1
  • Marco Muñiz
    • 1
  • Jiří Srba
    • 1
    Email author
  • Jakob Haahr Taankvist
    • 1
  1. 1.Department of Computer ScienceAalborg UniversityAalborgDenmark

Personalised recommendations