An Automaton Learning Approach to Solving Safety Games over Infinite Graphs

  • Daniel Neider
  • Ufuk TopcuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9636)


We propose a method to construct finite-state reactive controllers for systems whose interactions with their adversarial environment are modeled by infinite-duration two-player games over (possibly) infinite graphs. The method targets safety games with infinitely many states or with such a large number of states that it would be impractical—if not impossible—for conventional synthesis techniques that work on the entire state space. We resort to constructing finite-state controllers for such systems through an automata learning approach, utilizing a symbolic representation of the underlying game that is based on finite automata. Throughout the learning process, the learner maintains an approximation of the winning region (represented as a finite automaton) and refines it using different types of counterexamples provided by the teacher until a satisfactory controller can be derived (if one exists). We present a symbolic representation of safety games (inspired by regular model checking), propose implementations of the learner and teacher, and evaluate their performance on examples motivated by robotic motion planning.


Symbolic Representation Regular Language Automaton Learning Infinite Graph Deterministic Finite Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Mohammed Alshiekh for his support with the experiments. This work has been partly funded by the awards AFRL #FA8650-15-C-2546, ONR #N000141310778, ARO #W911NF-15-1-0592, NSF #1550212, DARPA #W911NF-16-1-0001, and NSF #1138994.


  1. 1.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bauer, S.S., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: A modal specification theory for components with data. Sci. Comput. Program. 83, 106–128 (2014)CrossRefGoogle Scholar
  3. 3.
    Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based approach to solving games on infinite graphs. In: POPL 2014, pp. 221–234. ACM (2014)Google Scholar
  4. 4.
    Biermann, A., Feldman, J.: On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. Comput. C–21(6), 592–597 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Blumensath, A., Grädel, E.: Finite presentations of infinite structures: automata and interpretations. Theor. Comput. Syst. 37(6), 641–674 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652–657. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Cheng, C.-H., Knoll, A., Luttenberger, M., Buckl, C.: GAVS+: an open platform for the research of algorithmic game solving. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 258–261. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Ehlers, R., Raman, V., Finucane, C.: Slugs GR(1) synthesizer (2014).
  10. 10.
    Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust framework for learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 69–87. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Gold, E.M.: Complexity of automaton identification from given data. Inf. Control 37(3), 302–320 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Heule, M.J.H., Verwer, S.: Exact DFA identification using SAT solvers. In: Sempere, J.M., García, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 66–79. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Holík, L., Isberner, M., Jonsson, B.: Mediator synthesis in a component algebra with data. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Olderog-Festschrift. LNCS, vol. 9360, pp. 238–259. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23506-6_16 CrossRefGoogle Scholar
  14. 14.
    Itzhaky, S., Gulwani, S., Immerman, N., Sagiv, M.: A simple inductive synthesis methodology and its applications. In: OOPSLA 2010, pp. 36–46. ACM (2010)Google Scholar
  15. 15.
    Kupferman, O., Piterman, N., Vardi, M.Y.: An automata-theoretic approach to infinite-state systems. In: Manna, Z., Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200, pp. 202–259. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic 65(2), 149–184 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Møller, A.: dk.brics.automaton - finite-state automata and regular expressions for Java (2010).
  18. 18.
    de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Neider, D.: Reachability games on automatic graphs. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 222–230. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Neider, D.: Small strategies for safety games. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 306–320. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Neider, D., Jansen, N.: Regular model checking using solver technologies and automata learning. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 16–31. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. 22.
    Neider, D., Topcu, U.: An automaton learning approach to solving safety games over infinite graphs. CoRR abs/1601.01660 (2016).
  23. 23.
    Oncina, J., Garcia, P.: Inferring regular languages in polynomial update time. Pattern Recogn. Image Anal. 1, 49–61 (1992)CrossRefGoogle Scholar
  24. 24.
    Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: Tulip: a software toolbox for receding horizon temporal logic planning. In: HSCC 2011, pp. 313–314. ACM (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.University of CaliforniaLos AngelesUSA
  2. 2.The University of Texas at AustinAustinUSA

Personalised recommendations