Personalized Radiation Oncology: Epidermal Growth Factor Receptor and Other Receptor Tyrosine Kinase Inhibitors

  • Geoff S Higgins
  • Mechthild KrauseEmail author
  • W Gillies McKenna
  • Michael Baumann
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 198)


Molecular biomarkers are currently evaluated in preclinical and clinical studies in order to establish predictors for treatment decisions in radiation oncology. The receptor tyrosine kinases (RTK) are described in the following text. Among them, the most data are available for the epidermal growth factor receptor (EGFR) that plays a major role for prognosis of patients after radiotherapy, but seems also to be involved in mechanisms of radioresistance, specifically in repopulation of tumour cells between radiotherapy fractions. Monoclonal antibodies against the EGFR improve locoregional tumour control and survival when applied during radiotherapy, however, the effects are heterogeneous and biomarkers for patient selection are warranted. Also other RTK´s such as c-Met and IGF-1R seem to play important roles in tumour radioresistance. Beside the potential to select patients for molecular targeting approaches combined with radiotherapy, studies are also needed to evluate radiotherapy adaptation approaches for selected patients, i.e. adaptation of radiation dose, or, more sophisticated, of target volumes.


EGFR, Biomarker, Radiotherapy, HER-2, Receptor tyrosine kinases 


  1. Abdollahi A et al (2005) Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med 201(6):925–935CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abramsson A, Lindblom P, Betsholtz C (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112(8):1142–1151CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adams TE et al (2000) Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci 57(7):1050–1093CrossRefPubMedGoogle Scholar
  4. Aebersold DM et al (2001) Involvement of the hepatocyte growth factor/scatter factor receptor c-met and of Bcl-xL in the resistance of oropharyngeal cancer to ionizing. Int J Cancer 96(1):41–54CrossRefPubMedGoogle Scholar
  5. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22(10):1276–1312CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ang KK et al (2002) Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res 62(24):7350–7356PubMedGoogle Scholar
  7. Arcaro A (2013) Targeting the insulin-like growth factor-1 receptor in human cancer. Front Pharmacol 4:30CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arnaldez FI, Helman LJ (2012) Targeting the insulin growth factor receptor 1. Hematol Oncol Clin North Am 26(3):527–542Google Scholar
  9. Battegay EJ et al (1994) PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J Cell Biol 125(4):917–928CrossRefPubMedGoogle Scholar
  10. Baumann M et al (2007) EGFR-targeted anti-cancer drugs in radiotherapy: preclinical evaluation of mechanisms. Radiother Oncol 83(3):238–248CrossRefPubMedGoogle Scholar
  11. Bentzen SM et al (2005) Epidermal growth factor receptor expression in pretreatment biopsies from head and neck squamous cell carcinoma as a predictive factor for a benefit from accelerated radiation therapy in a randomized controlled trial. J Clin Oncol 23(24):5560–5567CrossRefPubMedGoogle Scholar
  12. Bernhard EJ et al (2000) Direct evidence for the contribution of activated N-ras and K-ras oncogenes to increased intrinsic radiation resistance in human tumor cell lines. Cancer Res 60(23):6597–6600PubMedGoogle Scholar
  13. Bhardwaj V et al (2012) C-Met inhibitor MK-8003 radiosensitizes c-Met-expressing non-small-cell lung cancer cells with radiation-induced c-Met-expression. J Thorac Oncol 7(8):1211–1217CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bokemeyer C et al (2009) Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 27(5):663–671CrossRefPubMedGoogle Scholar
  15. Bonner JA et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354(6):567–578CrossRefPubMedGoogle Scholar
  16. Bonner JA et al (2010) Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol 11(1):21–28CrossRefPubMedGoogle Scholar
  17. Burtness B, Bauman JE, Galloway T (2013) Novel targets in HPV-negative head and neck cancer: overcoming resistance to EGFR inhibition. Lancet Oncol 14(8):e302–e309CrossRefPubMedGoogle Scholar
  18. Cappuzzo F et al (2009) Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol 27(10):1667–1674CrossRefPubMedPubMedCentralGoogle Scholar
  19. Caudell JJ et al (2008) Locoregionally advanced head and neck cancer treated with primary radiotherapy: a comparison of the addition of cetuximab or chemotherapy and the impact of protocol treatment. Int J Radiat Oncol Biol Phys 71(3):676–681CrossRefPubMedGoogle Scholar
  20. Chakravarti A et al (2002) The epidermal growth factor receptor pathway mediates resistance to sequential administration of radiation and chemotherapy in primary human glioblastoma cells in a RAS-dependent manner. Cancer Res 62(15):4307–4315PubMedGoogle Scholar
  21. Chakravarti A et al. (2005a) Expression of the epidermal growth factor receptor and HER-2 are predictors of favorable outcome and reduced complete response rates, respectively, in patients with muscle-invading bladder cancers treated by concurrent radiation and cisplatin-based chemotherapy: a report from the radiation therapy oncology group. Int J Radiat Oncol Biol Phys 62(2):309–317Google Scholar
  22. Chakravarti A et al. (2005b) Immunohistochemically determined total epidermal growth factor receptor levels not of prognostic value in newly diagnosed glioblastoma multiforme: report from the radiation therapy oncology group. Int J Radiat Oncol Biol Phys 62(2)318–327Google Scholar
  23. Chinot OL et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370(8):709–722CrossRefPubMedGoogle Scholar
  24. Chitnis MM et al. (2013) IGF-1R inhibition enhances radiosensitivity and delays double-strand break repair by both non-homologous end-joining and homologous recombination. OncogeneGoogle Scholar
  25. Chung EJ et al (2009) In vitro and in vivo radiosensitization with AZD6244 (ARRY-142886), an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 kinase. Clin Cancer Res 15(9):3050–3057CrossRefPubMedPubMedCentralGoogle Scholar
  26. Contessa JN et al (2006) Compensatory ErbB3/c-Src signaling enhances carcinoma cell survival to ionizing radiation. Breast Cancer Res Treat 95(1):17–27CrossRefPubMedGoogle Scholar
  27. De Bacco F et al (2011) Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J Natl Cancer Inst 103(8):645–661CrossRefPubMedGoogle Scholar
  28. Dings RP et al (2007) Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization. Clin Cancer Res 13(11):3395–3402CrossRefPubMedPubMedCentralGoogle Scholar
  29. Duru N et al (2012) HER2-associated radioresistance of breast cancer stem cells isolated from HER2-negative breast cancer cells. Clin Cancer Res 18(24):6634–6647CrossRefPubMedPubMedCentralGoogle Scholar
  30. Eberhard DA et al (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23(25):5900–5909CrossRefPubMedGoogle Scholar
  31. Eicheler W et al (2005) Kinetics of EGFR expression during fractionated irradiation varies between different human squamous cell carcinoma lines in nude mice. Radiother Oncol 76(2):151–156CrossRefPubMedGoogle Scholar
  32. Eriksen JG, Steiniche T, Overgaard J et al (2005) The influence of epidermal growth factor receptor and tumor differentiation on the response to accelerated radiotherapy of squamous cell carcinomas of the head and neck in the randomized DAHANCA 6 and 7 study. Radiother Oncol 74(2):93–100CrossRefPubMedGoogle Scholar
  33. Fan S et al (1998) Scatter factor protects epithelial and carcinoma cells against apoptosis induced by DNA-damaging agents. Oncogene 17(2):131–141CrossRefPubMedGoogle Scholar
  34. Fan S et al (2000) The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3’ kinase. Oncogene 19(18):2212–2223CrossRefPubMedGoogle Scholar
  35. Favelyukis S et al (2001) Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nat Struct Biol 8(12):1058–1063CrossRefPubMedGoogle Scholar
  36. Ferrara N et al (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3(5):391–400CrossRefPubMedGoogle Scholar
  37. Fidler MJ et al (2012) Targeting the insulin-like growth factor receptor pathway in lung cancer: problems and pitfalls. Ther Adv Med Oncol 4(2):51–60CrossRefPubMedPubMedCentralGoogle Scholar
  38. Fokas E et al (2012) Dual inhibition of the PI3K/mTOR pathway increases tumor radiosensitivity by normalizing tumor vasculature. Cancer Res 72(1):239–248CrossRefPubMedGoogle Scholar
  39. Gately K et al (2014) High coexpression of both EGFR and IGF1R correlates with poor patient prognosis in resected non-small-cell lung cancer. Clin Lung Cancer 15(1):58–66CrossRefPubMedGoogle Scholar
  40. Gilbert MR et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370(8):699–708CrossRefPubMedPubMedCentralGoogle Scholar
  41. Goel S et al (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gross NJ (1977) Pulmonary effects of radiation therapy. Ann Intern Med 86(1):81–92CrossRefPubMedGoogle Scholar
  43. Gurtner K et al (2011) Diverse effects of combined radiotherapy and EGFR inhibition with antibodies or TK inhibitors on local tumour control and correlation with EGFR gene expression. Radiother Oncol 99:323–330CrossRefPubMedGoogle Scholar
  44. Gurtner K et al. (2013) EGFR-amplification correlates with response to combined treatment of fractionated irradiation and EGFR-inhibition in HNSCC tumour xenografts. In: 17th European Cancer conference (ECCO), Amsterdam, p 51Google Scholar
  45. Hirsch FR et al (2003) Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21(20):3798–3807CrossRefPubMedGoogle Scholar
  46. Hirsch FR et al (2006) Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. J Clin Oncol 24(31):5034–5042CrossRefPubMedGoogle Scholar
  47. Homsi J, Daud AI (2007) Spectrum of activity and mechanism of action of VEGF/PDGF inhibitors. Cancer Control 14(3):285–294PubMedGoogle Scholar
  48. Iwasa T et al (2009) Inhibition of insulin-like growth factor 1 receptor by CP-751,871 radiosensitizes non-small cell lung cancer cells. Clin Cancer Res 15(16):5117–5125CrossRefPubMedGoogle Scholar
  49. Jeon YK et al (2006) Clinicopathologic features and prognostic implications of epidermal growth factor receptor (EGFR) gene copy number and protein expression in non-small cell lung cancer. Lung Cancer 54(3):387–398CrossRefPubMedGoogle Scholar
  50. Johnson BE, Janne PA (2005) Epidermal growth factor receptor mutations in patients with non-small cell lung cancer. Cancer Res 65(17):7525–7529PubMedGoogle Scholar
  51. Karapetis CS et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359(17):1757–1765CrossRefPubMedGoogle Scholar
  52. Kleibeuker EA et al (2012) Combining angiogenesis inhibition and radiotherapy: a double-edged sword. Drug Resist Updat 15(3):173–182CrossRefPubMedGoogle Scholar
  53. Koi L et al (2014) Radiolabeled anti-EGFR-antibody improves local tumor control after external beam radiotherapy and offers theragnostic potential. Radiother Oncol 110(2):362–369CrossRefPubMedGoogle Scholar
  54. Kong DS et al (2009) Prognostic significance of c-Met expression in glioblastomas. Cancer 115(1):140–148CrossRefPubMedGoogle Scholar
  55. Krause M, Baumann M (2008) Clinical biomarkers of kinase activity: examples from EGFR inhibition trials. Cancer Metastasis Rev 27(3):387–402CrossRefPubMedGoogle Scholar
  56. Lara PC et al (2011) IGF-1R expression predicts clinical outcome in patients with locally advanced oral squamous cell carcinoma. Oral Oncol 47(7):615–619CrossRefPubMedGoogle Scholar
  57. Ledel F et al (2014) HER3 expression in patients with primary colorectal cancer and corresponding lymph node metastases related to clinical outcome. Eur J Cancer 50(3):656–662CrossRefPubMedGoogle Scholar
  58. Lee CM et al (2005) Correlation between human epidermal growth factor receptor family (EGFR, HER2, HER3, HER4), phosphorylated Akt (P-Akt), and clinical outcomes after radiation therapy in carcinoma of the cervix. Gynecol Oncol 99(2):415–421CrossRefPubMedGoogle Scholar
  59. Li M, Jendrossek V, Belka C (2007) The role of PDGF in radiation oncology. Radiat Oncol 2:5CrossRefPubMedPubMedCentralGoogle Scholar
  60. Linge et al (2016) Clin Cancer Res, epub doi:  10.1158/1078-0432.CCR-15-1990
  61. Lipton A et al (2013) HER3, p95HER2, and HER2 protein expression levels define multiple subtypes of HER2-positive metastatic breast cancer. Breast Cancer Res Treat 141(1):43–53CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lloret M et al (2008) MVP expression is related to IGF1-R in cervical carcinoma patients treated by radiochemotherapy. Gynecol Oncol 110(3):304–307CrossRefPubMedGoogle Scholar
  63. Ludovini V et al (2013) Concomitant high gene copy number and protein overexpression of IGF1R and EGFR negatively affect disease-free survival of surgically resected non-small-cell-lung cancer patients. Cancer Chemother Pharmacol 71(3):671–680CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ma PC et al (2003) c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res 63(19):6272–6281PubMedGoogle Scholar
  65. Ma PC et al (2008) Expression and mutational analysis of MET in human solid cancers. Genes Chromosomes Cancer 47(12):1025–1037CrossRefPubMedPubMedCentralGoogle Scholar
  66. Macaulay VM et al (2001) Downregulation of the type 1 insulin-like growth factor receptor in mouse melanoma cells is associated with enhanced radiosensitivity and impaired activation of Atm kinase. Oncogene 20(30):4029–4040CrossRefPubMedGoogle Scholar
  67. Marioni G et al (2011) Laryngeal carcinoma prognosis after postoperative radiotherapy correlates with CD105 expression, but not with angiogenin or EGFR expression. Eur Arch Otorhinolaryngol 268(12):1779–1787CrossRefPubMedGoogle Scholar
  68. Maulik G et al (2002) Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev 13(1):41–59CrossRefPubMedGoogle Scholar
  69. Moreno-Acosta P et al (2012) IGF1R gene expression as a predictive marker of response to ionizing radiation for patients with locally advanced HPV16-positive cervical cancer. Anticancer Res 32(10):4319–4325PubMedGoogle Scholar
  70. Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37(Suppl 4):9–15CrossRefGoogle Scholar
  71. Olsson AK et al (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371CrossRefPubMedGoogle Scholar
  72. Organ SL, Tsao MS (2011) An overview of the c-MET signaling pathway. Ther Adv Med Oncol 3(1 Suppl):S7–S19CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ou SH (2011) Crizotinib: a novel and first-in-class multitargeted tyrosine kinase inhibitor for the treatment of anaplastic lymphoma kinase rearranged non-small cell lung cancer and beyond. Drug Des Devel Ther 5:471–485CrossRefPubMedPubMedCentralGoogle Scholar
  74. Peretz S et al (2001) ATM-dependent expression of the insulin-like growth factor-I receptor in a pathway regulating radiation response. Proc Natl Acad Sci U.S.A. 98(4):1676–1681CrossRefPubMedPubMedCentralGoogle Scholar
  75. Petersen C et al (2003) Proliferation and micromilieu during fractionated irradiation of human FaDu squamous cell carcinoma in nude mice. Int J Radiat Biol 79(7):469–477CrossRefPubMedGoogle Scholar
  76. Ponzetto C et al (1994) A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77(2):261–271CrossRefPubMedGoogle Scholar
  77. Riesterer O et al (2011) Combination of anti-IGF-1R antibody A12 and ionizing radiation in upper respiratory tract cancers. Int J Radiat Oncol Biol Phys 79(4):1179–1187CrossRefPubMedGoogle Scholar
  78. Risau W et al (1992) Platelet-derived growth factor is angiogenic in vivo. Growth Factors 7(4):261–266CrossRefPubMedGoogle Scholar
  79. Rochester MA et al (2005) Silencing of the IGF1R gene enhances sensitivity to DNA-damaging agents in both PTEN wild-type and mutant human prostate cancer. Cancer Gene Ther 12(1):90–100CrossRefPubMedGoogle Scholar
  80. Salomon DS et al (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19(3):183–232CrossRefPubMedGoogle Scholar
  81. Scagliotti GV, Novello S, von Pawel J (2013) The emerging role of MET/HGF inhibitors in oncology. Cancer Treat Rev 39(7):793–801CrossRefPubMedGoogle Scholar
  82. Shelton JG et al (2004) Synergy between PI3K/Akt and Raf/MEK/ERK pathways in IGF-1R mediated cell cycle progression and prevention of apoptosis in hematopoietic cells. Cell Cycle 3(3):372–379CrossRefPubMedGoogle Scholar
  83. Soliman M et al (2013) GTV differentially impacts locoregional control of non-small cell lung cancer (NSCLC) after different fractionation schedules: subgroup analysis of the prospective randomized CHARTWEL trial. Radiother Oncol 106(3):299–304CrossRefPubMedGoogle Scholar
  84. Tada H et al (2003) Increased binding and chemotactic capacities of PDGF-BB on fibroblasts in radiation pneumonitis. Radiat Res 159(6):805–811CrossRefPubMedGoogle Scholar
  85. Temam S et al (2007) Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer. J Clin Oncol 25(16):2164–2170CrossRefPubMedGoogle Scholar
  86. Tsao MS et al (2005) Erlotinib in lung cancer—molecular and clinical predictors of outcome. N Engl J Med 353(2):133–144CrossRefPubMedGoogle Scholar
  87. Turner BC et al (1997) Insulin-like growth factor-I receptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res 57(15):3079–3083PubMedGoogle Scholar
  88. Valenciano A et al (2012) Role of IGF-1 receptor in radiation response. Transl Oncol 5(1):1–9CrossRefPubMedPubMedCentralGoogle Scholar
  89. Welsh JW et al (2009) The c-Met receptor tyrosine kinase inhibitor MP470 radiosensitizes glioblastoma cells. Radiat Oncol 4:69CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wheeler S et al (2012) Tumor epidermal growth factor receptor and EGFR PY1068 are independent prognostic indicators for head and neck squamous cell carcinoma. Clin Cancer Res 18(8):2278–2289CrossRefPubMedPubMedCentralGoogle Scholar
  91. Xue Y et al (2012) PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. Nat 18(1):100–110CrossRefGoogle Scholar
  92. Yavari K et al (2010) SiRNA-mediated IGF-1R inhibition sensitizes human colon cancer SW480 cells to radiation. Acta Oncol 49(1):70–75CrossRefPubMedGoogle Scholar
  93. Yee D (2012) Insulin-like growth factor receptor inhibitors: baby or the bathwater? J Natl Cancer Inst 104(13):975–981CrossRefPubMedPubMedCentralGoogle Scholar
  94. Yi S, Tsao MS (2000) Activation of hepatocyte growth factor-met autocrine loop enhances tumorigenicity in a human lung adenocarcinoma cell line. Neoplasia 2(3):226–234CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zha J, Lackner MR (2010) Targeting the insulin-like growth factor receptor-1R pathway for cancer therapy. Clin Cancer Res 16(9):2512–2517CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Geoff S Higgins
    • 1
  • Mechthild Krause
    • 2
    • 3
    • 4
    • 5
    Email author
  • W Gillies McKenna
    • 1
  • Michael Baumann
    • 2
    • 3
    • 4
    • 5
  1. 1.Gray Laboratories, Department of Oncology, Cancer Research UK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
  2. 2.OncoRay - National Center for Radiation Research in Oncology (NCRO), Carl Gustav Carus Faculty of MedicineUniversity Hospital, Technische Universität Dresden and Helmholtz-Zentrum Dresden—RossendorfDresdenGermany
  3. 3.German Cancer Consortium (DKTK) Dresden, German Cancer Research Center (DKFZ)HeidelbergGermany
  4. 4.Helmholtz-Zentrum Dresden—RossendorfInsititute of RadiooncologyDresdenGermany
  5. 5.Department of Radiation Oncology, Carl Gustav Carus Faculty of MedicineUniversity Hospital, Technische Universität DresdenDresdenGermany

Personalised recommendations