Shortest Paths in One-Counter Systems

  • Dmitry Chistikov
  • Wojciech Czerwiński
  • Piotr Hofman
  • Michał Pilipczuk
  • Michael Wehar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9634)

Abstract

We show that any one-counter automaton with n states, if its language is non-empty, accepts some word of length at most \(O(n^2)\). This closes the gap between the previously known upper bound of \(O(n^3)\) and lower bound of \(\mathrm {\Omega }(n^2)\). More generally, we prove a tight upper bound on the length of shortest paths between arbitrary configurations in one-counter transition systems (weaker bounds have previously appeared in the literature).

References

  1. 1.
    Alur, R., Černý, P.: Streaming transducers for algorithmic verification of single-pass list-processing programs. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, 26–28 January 2011, pp. 599–610 (2011)Google Scholar
  2. 2.
    Atig, M.F., Bouajjani, A., Kumar, K.N., Saivasan, P.: On bounded reachability analysis of shared memory systems. In: 34th International Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2014, 15–17 December 2014, New Delhi, India, pp. 611–623 (2014)Google Scholar
  3. 3.
    Barrett, C., Demri, S., Deters, M.: Witness runs for counter machines. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp. 120–150. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Chistikov, D.: Notes on counting with finite machines. In: 34th International Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2014, 15–17 December 2014, New Delhi, India, pp. 339–350 (2014)Google Scholar
  6. 6.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms 2nd (edn.) The MIT Press and McGraw-Hill Book Company. ISBN 0-262-03293-7 (2001)Google Scholar
  7. 7.
    Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger LTL. J. Log. Comput. 19(6), 1541–1575 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Etessami, K., Wojtczak, D., Yannakakis, M.: Quasi-birth-death processes, tree-like QBDs, probabilistic 1-counter automata, and pushdown systems. Perform. Eval. 67(9), 837–857 (2010)CrossRefGoogle Scholar
  9. 9.
    Hofman, P., Mayr, R., Totzke, P.: Decidability of weak simulation on one-counter nets. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS 2013, New Orleans, LA, USA, 25–28 June 2013, pp. 203–212 (2013)Google Scholar
  10. 10.
    Kozen, D.C.: Design and Analysis of Algorithms. Texts and Monographs in Computer Science. Springer, New York (1992). ISBN: 978-3-540-97687-5CrossRefGoogle Scholar
  11. 11.
    Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for AC-like equational theories with homomorphisms. Research report LSV-04-16, Laboratoire Spécification et Vérification, ENS Cachan, France, p. 69, November 2004. http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PS/rr-lsv-2004-16.rr.ps
  12. 12.
    Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for AC-like equational theories with homomorphisms. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 308–322. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Latteux, M.: Langages à un compteur. J. Comput. Syst. Sci. 26(1), 14–33 (1983)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS 2015, 6–10 July 2015, Kyoto, Japan, pp. 56–67 (2015)Google Scholar
  15. 15.
    Podelski, A., Rybalchenko, A.: ARMC: the logical choice for software model checking with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354, pp. 245–259. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Thakkar, J., Kanade, A., Alur, R.: Transducer-based algorithmic verification of retransmission protocols over noisy channels. In: Beyer, D., Boreale, M. (eds.) FORTE 2013 and FMOODS 2013. LNCS, vol. 7892, pp. 209–224. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Thomas, W.: The reachability problem over infinite graphs. In: Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 12–18. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dmitry Chistikov
    • 1
  • Wojciech Czerwiński
    • 2
  • Piotr Hofman
    • 3
  • Michał Pilipczuk
    • 2
  • Michael Wehar
    • 4
  1. 1.Max Planck Institute for Software Systems (MPI-SWS)Kaiserslautern and SaarbrückenGermany
  2. 2.Institute of InformaticsUniversity of WarsawWarsawPoland
  3. 3.Laboratoire Spécification et Vérification (LSV)ENS Cachan & CNRSParisFrance
  4. 4.Department of Computer Science and EngineeringUniversity at BuffaloBuffaloUSA

Personalised recommendations