Chasing Convex Bodies and Functions

  • Antonios Antoniadis
  • Neal Barcelo
  • Michael Nugent
  • Kirk Pruhs
  • Kevin SchewiorEmail author
  • Michele Scquizzato
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9644)


We consider three related online problems: Online Convex Optimization, Convex Body Chasing, and Lazy Convex Body Chasing. In Online Convex Optimization the input is an online sequence of convex functions over some Euclidean space. In response to a function, the online algorithm can move to any destination point in the Euclidean space. The cost is the total distance moved plus the sum of the function costs at the destination points. Lazy Convex Body Chasing is a special case of Online Convex Optimization where the function is zero in some convex region, and grows linearly with the distance from this region. And Convex Body Chasing is a special case of Lazy Convex Body Chasing where the destination point has to be in the convex region. We show that these problems are equivalent in the sense that if any of these problems have an O(1)-competitive algorithm then all of the problems have an O(1)-competitive algorithm. By leveraging these results we then obtain the first O(1)-competitive algorithm for Online Convex Optimization in two dimensions, and give the first O(1)-competitive algorithm for chasing linear subspaces. We also give a simple algorithm and O(1)-competitiveness analysis for chasing lines.



We thank Nikhil Bansal, Anupam Gupta, Cliff Stein, Ravishankar Krishnaswamy, and Adam Wierman for helpful discussions. We also thank an anonymous reviewer for pointing out an important subtlety in one of our proofs.


  1. 1.
    Andrew, L.L.H., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A., Wierman, A.: A tale of two metrics: simultaneous bounds on competitiveness and regret. In: Conference on Learning Theory, pp. 741–763 (2013)Google Scholar
  2. 2.
    Andrew, L.L.H., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A., Wierman, A.: A tale of two metrics: simultaneous bounds on competitiveness and regret. CoRR, abs/1508.03769 (2015)Google Scholar
  3. 3.
    Bansal, N., Buchbinder, N., Naor, J.: Towards the randomized k-server conjecture: a primal-dual approach. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 40–55 (2010)Google Scholar
  4. 4.
    Bansal, N., Gupta, A., Krishnaswamy, R., Pruhs, K., Schewior, K., Stein, C.: A 2-competitive algorithm for online convex optimization with switching costs. In: Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pp. 96–109 (2015)Google Scholar
  5. 5.
    Bartal, Y., Bollobás, B., Mendel, M.: Ramsey-type theorems for metric spaces with applications to online problems. J. Comput. Syst. Sci. 72(5), 890–921 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bartal, Y., Linial, N., Mendel, M., Naor, A.: On metric Ramsey-type phenomena. In: ACM Symposium on Theory of Computing, pp. 463–472 (2003)Google Scholar
  7. 7.
    Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task system. J. ACM 39(4), 745–763 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Coté, A., Meyerson, A., Poplawski, L.: Randomized \(k\)-server on hierarchical binary trees. In: ACM Symposium on Theory of Computing, pp. 227–234 (2008)Google Scholar
  9. 9.
    Fiat, A., Mendel, M.: Better algorithms for unfair metrical task systems and applications. SIAM J. Comput. 32(6), 1403–1422 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Friedman, J., Linial, N.: On convex body chasing. Discrete Comput. Geom. 9, 293–321 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fujiwara, H., Iwama, K., Yonezawa, K.: Online chasing problems for regular polygons. Inf. Process. Lett. 108(3), 155–159 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.S.: Competitive randomized algorithms for nonuniform problems. Algorithmica 11(6), 542–571 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Koutsoupias, E., Taylor, D.S.: The CNN problem and other \(k\)-server variants. Theor. Comput. Sci. 324(2–3), 347–359 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lin, M., Liu, Z., Wierman, A., Andrew, L.L.H.: Online algorithms for geographical load balancing. In: International Green Computing Conference, pp. 1–10 (2012)Google Scholar
  15. 15.
    Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Online dynamic capacity provisioning in data centers. In: Allerton Conference on Communication, Control, and Computing, pp. 1159–1163 (2011)Google Scholar
  16. 16.
    Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Dynamic right-sizing for power-proportional data centers. IEEE/ACM Trans. Netw. 21(5), 1378–1391 (2013)CrossRefGoogle Scholar
  17. 17.
    Lin, M., Wierman, A., Roytman, A., Meyerson, A., Andrew, L.L.H.: Online optimization with switching cost. SIGMETRICS Perform. Eval. Rev. 40(3), 98–100 (2012)CrossRefGoogle Scholar
  18. 18.
    Liu, Z., Lin, M., Wierman, A., Low, S.H., Andrew, L.L.H.: Greening geographical load balancing. In: ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pp. 233–244 (2011)Google Scholar
  19. 19.
    Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Application. Academic Press, Cambridge (1979)zbMATHGoogle Scholar
  20. 20.
    Sitters, R.: The generalized work function algorithm is competitive for the generalized 2-server problem. SIAM J. Comput. 43(1), 96–125 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wang, K., Lin, M., Ciucu, F., Wierman, A., Lin, C.: Characterizing the impact of the workload on the value of dynamic resizing in data centers. In: IEEE INFOCOM, pp. 515–519 (2013)Google Scholar
  22. 22.
    Wierman, A.: Personal Communication (2015)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Antonios Antoniadis
    • 1
  • Neal Barcelo
    • 2
  • Michael Nugent
    • 2
  • Kirk Pruhs
    • 2
  • Kevin Schewior
    • 3
    Email author
  • Michele Scquizzato
    • 4
  1. 1.Max-Planck-Institut Für InformatikSaarbrückenGermany
  2. 2.Department of Computer ScienceUniversity of PittsburghPittsburghUSA
  3. 3.Technische Universität Berlin, Institut Für MathematikBerlinGermany
  4. 4.Department of Computer ScienceUniversity of HoustonHoustonUSA

Personalised recommendations