Routing in Unit Disk Graphs

  • Haim Kaplan
  • Wolfgang Mulzer
  • Liam Roditty
  • Paul SeiferthEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9644)


Let \(S \subset \mathbb {R}^2\) be a set of n sites. The unit disk graph \({{\mathrm{UD}}}(S)\) on S has vertex set S and an edge between two distinct sites \(s,t \in S\) if and only if s and t have Euclidean distance \(|st| \le 1\).

A routing scheme R for \({{\mathrm{UD}}}(S)\) assigns to each site \(s \in S\) a label \(\ell (s)\) and a routing table \(\rho (s)\). For any two sites \(s, t \in S\), the scheme R must be able to route a packet from s to t in the following way: given a current site r (initially, \(r = s\)), a header h (initially empty), and the target label \(\ell (t)\), the scheme R may consult the current routing table \(\rho (r)\) to compute a new site \(r'\) and a new header \(h'\), where \(r'\) is a neighbor of r. The packet is then routed to \(r'\), and the process is repeated until the packet reaches t. The resulting sequence of sites is called the routing path. The stretch of R is the maximum ratio of the (Euclidean) length of the routing path of R and the shortest path in \({{\mathrm{UD}}}(S)\), over all pairs of sites in S.

For any given \(\varepsilon > 0\), we show how to construct a routing scheme for \({{\mathrm{UD}}}(S)\) with stretch \(1+\varepsilon \) using labels of \(O(\log n)\) bits and routing tables of \(O(\varepsilon ^{-5}\log ^2 n \log ^2 D)\) bits, where D is the (Euclidean) diameter of \({{\mathrm{UD}}}(S)\). The header size is \(O(\log n \log D)\) bits.


  1. 1.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Callahan, P., Kosaraju, S.: A decomposition of multidimensional point sets with applications to \(k\)-nearest-neighbors and \(n\)-body potential fields. J. ACM 42(1), 67–90 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chechik, S.: Compact routing schemes with improved stretch. In: Proceedings of 32nd ACM Symposium on Principles of Distributed Computing (PODC), pp. 33–41 (2013)Google Scholar
  4. 4.
    Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1–3), 165–177 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fraigniaud, Pierre, Gavoille, Cyril: Routing in trees. In: Orejas, F., Spirakis, Paul G., van Leeuwen, Jan (eds.) ICALP 2001. LNCS, vol. 2076, p. 757. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Gao, J., Zhang, L.: Well-separated pair decomposition for the unit-disk graph metric and its applications. SIAM J. Comput. 35(1), 151–169 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Giordano, S., Stojmenovic, I.: Position based routing algorithms for ad hoc networks: a taxonomy. In: Cheng, X., Huang, X., Du, D.-Z. (eds.) Ad Hoc Wireless Networking. Network Theory and Applications, vol. 14, pp. 103–136. Springer, New York (2004)CrossRefGoogle Scholar
  8. 8.
    Gupta, A., Kumar, A., Rastogi, R.: Traveling with a Pez dispenser (or, routing issues in MPLS). SIAM J. Comput. 34(2), 453–474 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Narasimhan, G., Smid, M.H.M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J. ACM 36(3), 510–530 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Roditty, L., Tov, R.: New routing techniques and their applications. In: Proceedings of 34th ACM Symposium on Principles of Distributed Computing (PODC), pp. 23–32 (2015)Google Scholar
  12. 12.
    Santoro, N., Khatib, R.: Labelling and implicit routing in networks. Comput. J. 28(1), 5–8 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. J. ACM 51(6), 993–1024 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of 13th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 1–10 (2001)Google Scholar
  15. 15.
    Yan, C., Xiang, Y., Dragan, F.F.: Compact and low delay routing labeling scheme for unit disk graphs. Comput. Geom. 45(7), 305–325 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Haim Kaplan
    • 1
  • Wolfgang Mulzer
    • 2
  • Liam Roditty
    • 3
  • Paul Seiferth
    • 2
    Email author
  1. 1.School of Computer ScienceTel Aviv UniversityTel AvivIsrael
  2. 2.Institut Für InformatikFreie Universität BerlinBerlinGermany
  3. 3.Department of Computer ScienceBar Ilan UniversityRamat GanIsrael

Personalised recommendations