Scheduling on Power-Heterogeneous Processors

  • Susanne Albers
  • Evripidis Bampis
  • Dimitrios Letsios
  • Giorgio LucarelliEmail author
  • Richard Stotz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9644)


We consider the problem of scheduling a set of jobs, each one specified by its release date, its deadline and its processing volume, on a set of heterogeneous speed-scalable processors, where the energy-consumption rate is processor-dependent. Our objective is to minimize the total energy consumption when both the preemption and the migration of jobs are allowed. We propose a new algorithm based on a compact linear programming formulation. Our method approaches the value of the optimal solution within any desired accuracy for a large set of continuous power functions. Furthermore, we develop a faster combinatorial algorithm based on flows for standard power functions and jobs whose density is lower bounded by a small constant. Finally, we extend and analyze the AVerage Rate (AVR) online algorithm in the heterogeneous setting.


Power Function Optimal Schedule Competitive Ratio Feasible Schedule Earliest Deadline First 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with migration. J. Comput. Syst. Sci. 81(7), 1194–1209 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Angel, E., Bampis, E., Kacem, F., Letsios, D.: Speed scaling on parallel processors with migration. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 128–140. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Bampis, E., Kononov, A.V., Letsios, D., Lucarelli, G., Sviridenko, M.: Energy efficient scheduling and routing via randomized rounding. In: FSTTCS, vol. 24 of LIPIcs, pp. 449–460. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)Google Scholar
  4. 4.
    Bampis, E., Letsios, D., Lucarelli, G.: Green scheduling, flows and matchings. Theor. Comput. Sci. 579, 126–136 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bansal, N., Bunde, D.P., Chan, H.-L., Pruhs, K.: Average rate speed scaling. Algorithmica 60(4), 877–889 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bansal, N., Chan, H.-L., Pruhs, K.: Speed scaling with an arbitrary power function. ACM Trans. Algorithms 9(2), 18 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. J. ACM 54(1) (2007)Google Scholar
  8. 8.
    Bingham, B.D., Greenstreet, M.R.: Energy optimal scheduling on multiprocessors with migration. In: ISPA, pp. 153–161 (2008)Google Scholar
  9. 9.
    Chen, J.-J., Hsu, H.-R., Chuang, K.-H., Yang, C.-L., Pang, A.-C., Kuo, T.-W.: Multiprocessor energy-efficient scheduling with task migration considerations. In: ECRTS, pp. 101–108. IEEE Computer Society (2004)Google Scholar
  10. 10.
    Federgruen, A., Groenevelt, H.: Preemptive scheduling of uniform machines by ordinary network flow techniques. Manage. Sci. 32(3), 341–349 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gonzalez, T., Sahni, S.: Open shop scheduling to minimize finish time. J. ACM 23(4), 665–679 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gonzalez, T., Sahni, S.: Preemptive scheduling of uniform processor systems. J. ACM 25, 92–101 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gupta, A., Im, S., Krishnaswamy, R., Moseley, B., Pruhs, K.: Scheduling heterogeneous processors isn’t as easy as you think. In: SODA, pp. 1242–1253 (2012)Google Scholar
  14. 14.
    Gupta, A., Krishnaswamy, R., Pruhs, K.: Scalably scheduling power-heterogeneous processors. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 312–323. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Li, M., Yao, A.C., Yao, F.F.: Discrete and continuous min-energy schedules for variable voltage processors. PNAS 103(11), 3983–3987 (2006)CrossRefGoogle Scholar
  16. 16.
    Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: FOCS, pp. 374–382 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Susanne Albers
    • 1
  • Evripidis Bampis
    • 2
  • Dimitrios Letsios
    • 3
  • Giorgio Lucarelli
    • 4
    Email author
  • Richard Stotz
    • 1
  1. 1.Fakultät für InformatikTechnische Universität MünchenMunichGermany
  2. 2.Sorbonne Universités, UPMC Univ. Paris 06, UMR 7606, LIP6ParisFrance
  3. 3.Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271Sophia AntipolisFrance
  4. 4.Université Grenoble-Alpes, INP, UMR 5217, LIGSaint-Martin-d’HèresFrance

Personalised recommendations