Skip to main content

Deterministic Sparse Suffix Sorting on Rewritable Texts

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9644)

Abstract

Given a rewritable text T of length n on an alphabet of size \(\sigma \), we propose an online algorithm computing the sparse suffix array and the sparse longest common prefix array of T in \(\mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( c \sqrt{\lg n} \right. + \left. m \lg m \lg n \lg ^* n\right) \) time by using the text space and \(\mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( m\right) \) additional working space, where \(m \le n\) is the number of suffixes to be sorted (provided online and arbitrarily), and \(c \ge m\) is the number of characters that must be compared for distinguishing the designated suffixes.

Keywords

  • Internal Node
  • Context Free Grammar
  • Suffix Tree
  • Lower Node
  • Abstract Data Type

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-49529-2_36
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-49529-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.

Notes

  1. 1.

    The original version prefers the left meta-block, but we change it for a more stable behavior.

  2. 2.

    The check is relaxed since nodes with different surnames cannot have the same name.

References

  1. Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In: SODA, pp. 819–828 (2000)

    Google Scholar 

  2. Bille, P., Fischer, J., Gørtz, I.L., Kopelowitz, T., Sach, B., Vildhøj, H.W.: Sparse suffix tree construction in small space. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 148–159. Springer, Heidelberg (2013)

    Google Scholar 

  3. Bille, P., Gørtz, I.L., Knudsen, M.B.T., Lewenstein, M., Vildhøj, H.W.: Longest common extensions in sublinear space. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 65–76. Springer, Heidelberg (2015)

    CrossRef  Google Scholar 

  4. Bille, P., Gørtz, I.L., Sach, B., Vildhøj, H.W.: Time-space trade-offs for longest common extensions. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 293–305. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  5. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. ACM Trans. Algorithms 3(1), 2 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Fischer, J., I, T., Köppl, D.: Deterministic sparse suffix sorting on rewritable texts. arXiv:1509.07417 (2015)

  7. Franceschini, G., Grossi, R.: No sorting? better searching! In: Foundations of Computer Science, pp. 491–498, October 2004

    Google Scholar 

  8. I, T., Kärkkäinen, J., Kempa, D.: Faster sparse suffix sorting. In: STACS, pp. 386–396 (2014)

    Google Scholar 

  9. Irving, R.W., Love, L.: The suffix binary search tree and suffix AVL tree. J. Discrete Algorithms 1(5–6), 387–408 (2003)

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53(6), 918–936 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Foundations of Computer Science, FOCS, pp. 596–604 (1999)

    Google Scholar 

  12. Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equality-tests in polylogarithmic time. In: SODA, pp. 213–222. SIAM (1994)

    Google Scholar 

  13. Nishimoto, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Dynamic index, LZ factorization, and LCE queries in compressed space. arXiv:1504.06954 (2015)

  14. Nong, G., Zhang, S., Chan, W.H.: Two efficient algorithms for linear time suffix array construction. IEEE Trans. Comput. 60(10), 1471–1484 (2011)

    MathSciNet  CrossRef  Google Scholar 

  15. Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction algorithms. ACM Comput. Surv. 39(2), 4 (2007)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Köppl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischer, J., I., T., Köppl, D. (2016). Deterministic Sparse Suffix Sorting on Rewritable Texts. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)