Deterministic Sparse Suffix Sorting on Rewritable Texts

  • Johannes Fischer
  • Tomohiro I.
  • Dominik KöpplEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9644)


Given a rewritable text T of length n on an alphabet of size \(\sigma \), we propose an online algorithm computing the sparse suffix array and the sparse longest common prefix array of T in \(\mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( c \sqrt{\lg n} \right. + \left. m \lg m \lg n \lg ^* n\right) \) time by using the text space and \(\mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( m\right) \) additional working space, where \(m \le n\) is the number of suffixes to be sorted (provided online and arbitrarily), and \(c \ge m\) is the number of characters that must be compared for distinguishing the designated suffixes.


Internal Node Context Free Grammar Suffix Tree Lower Node Abstract Data Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In: SODA, pp. 819–828 (2000)Google Scholar
  2. 2.
    Bille, P., Fischer, J., Gørtz, I.L., Kopelowitz, T., Sach, B., Vildhøj, H.W.: Sparse suffix tree construction in small space. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 148–159. Springer, Heidelberg (2013)Google Scholar
  3. 3.
    Bille, P., Gørtz, I.L., Knudsen, M.B.T., Lewenstein, M., Vildhøj, H.W.: Longest common extensions in sublinear space. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 65–76. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  4. 4.
    Bille, P., Gørtz, I.L., Sach, B., Vildhøj, H.W.: Time-space trade-offs for longest common extensions. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 293–305. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. ACM Trans. Algorithms 3(1), 2 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fischer, J., I, T., Köppl, D.: Deterministic sparse suffix sorting on rewritable texts. arXiv:1509.07417 (2015)
  7. 7.
    Franceschini, G., Grossi, R.: No sorting? better searching! In: Foundations of Computer Science, pp. 491–498, October 2004Google Scholar
  8. 8.
    I, T., Kärkkäinen, J., Kempa, D.: Faster sparse suffix sorting. In: STACS, pp. 386–396 (2014)Google Scholar
  9. 9.
    Irving, R.W., Love, L.: The suffix binary search tree and suffix AVL tree. J. Discrete Algorithms 1(5–6), 387–408 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53(6), 918–936 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Foundations of Computer Science, FOCS, pp. 596–604 (1999)Google Scholar
  12. 12.
    Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equality-tests in polylogarithmic time. In: SODA, pp. 213–222. SIAM (1994)Google Scholar
  13. 13.
    Nishimoto, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Dynamic index, LZ factorization, and LCE queries in compressed space. arXiv:1504.06954 (2015)
  14. 14.
    Nong, G., Zhang, S., Chan, W.H.: Two efficient algorithms for linear time suffix array construction. IEEE Trans. Comput. 60(10), 1471–1484 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction algorithms. ACM Comput. Surv. 39(2), 4 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceTU DortmundDortmundGermany

Personalised recommendations