Au, Y.H.: Shortest sequences containing primitive words and powers. Discrete Math. 338(12), 2320–2331 (2015)
MathSciNet
CrossRef
MATH
Google Scholar
Compeau, P.E.C., Pevzner, P.A., Tesler, G.: How to apply de Bruijn graphs to genome assembly. Nat. Biotechnol. 29, 987–991 (2011)
CrossRef
Google Scholar
Cooper, J., Heitsch, C.: The discrepancy of the lex-least de Bruijn sequence. Discrete Math. 310, 1152–1159 (2014)
MathSciNet
CrossRef
MATH
Google Scholar
Ford, L.R.: A cyclic arrangement of \(m\)-tuples. Report No. P-1071, RAND Corp., Santa Monica (1957)
Google Scholar
Fredricksen, H., Kessler, I.J.: An algorithm for generating necklaces of beads in two colors. Discrete Math. 61, 181–188 (1986)
MathSciNet
CrossRef
MATH
Google Scholar
Fredricksen, H., Maiorana, J.: Necklaces of beads in \(k\) colors and \(k\)-ary de Bruijn sequences. Discrete Math. 23, 207–210 (1978)
MathSciNet
CrossRef
MATH
Google Scholar
Graham, R.L., Knuth, D.E., Patashnik, O., Mathematics, C.: A Foundation for Computer Science, 2nd edn. Addison-Wesley Professional, Reading (1994)
MATH
Google Scholar
Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, vol. 4A. Addison-Wesley Professional, Boston (2011)
Google Scholar
Martin, M.H.: A problem in arrangements. Bull. Am. Math. Soc. 40, 859–864 (1934)
MathSciNet
CrossRef
MATH
Google Scholar
Moreno, E.: On the theorem of Fredricksen and Maiorana about de Bruijn sequences. Adv. Appl. Math. 33, 413–415 (2004)
MathSciNet
CrossRef
MATH
Google Scholar
Moreno, E.: On the theorem of Fredricksen and Maiorana about de Bruijn sequences. Adv. Appl. Math. 33(2), 413–415 (2004)
MathSciNet
CrossRef
MATH
Google Scholar
Moreno, E., Perrin, D.: Corrigendum to “On the theorem of Fredricksen and Maiorana about de Bruijn sequences”. Adv. Appl. Math. 62, 184–187 (2015)
MathSciNet
CrossRef
MATH
Google Scholar
Ruskey, F., Savage, C.D., Wang, T.M.Y.: Generating necklaces. J. Algorithms 13(3), 414–430 (1992)
MathSciNet
CrossRef
MATH
Google Scholar
Ruskey, F., Sawada, J., Williams, A.: De Bruijn sequences for fixed-weight binary strings. SIAM J. Discrete Math. 26(2), 605–617 (2012)
MathSciNet
CrossRef
MATH
Google Scholar
Sawada, J., Williams, A.: A Gray code for fixed-density necklaces and Lyndon words in constant amortized time. Theoret. Comput. Sci. 502, 46–54 (2013)
MathSciNet
CrossRef
MATH
Google Scholar
Sawada, J., Williams, A., Wong, D.: The lexicographically smallest universal cycle for binary strings with minimum specified weight. J. Discrete Algorithms 28, 31–40 (2014). StringMasters 2012 & 2013 Special Issue
MathSciNet
CrossRef
MATH
Google Scholar
Sawada, J., Williams, A., Wong, D., Generalizing the classic greedy, necklace constructions for de Bruijn sequences, universal cycles. Electron. J. Comb., 23(1) (2016). Paper #1.24
Google Scholar
Stein, S.K.: Mathematics: The Man-Made Universe, 3rd edn. W. H. Freeman and Company, San Francisco (1994)
Google Scholar