Stabbing Circles for Sets of Segments in the Plane

  • Mercè Claverol
  • Elena Khramtcova
  • Evanthia PapadopoulouEmail author
  • Maria Saumell
  • Carlos Seara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9644)


Stabbing a set S of n segments in the plane by a line is a well-known problem. In this paper we consider the variation where the stabbing object is a circle instead of a line. We show that the problem is tightly connected to cluster Voronoi diagrams, in particular, the Hausdorff and the farthest-color Voronoi diagram. Based on these diagrams, we provide a method to compute all the combinatorially different stabbing circles for S, and the stabbing circles with maximum and minimum radius. We give conditions under which our method is fast. These conditions are satisfied if the segments in S are parallel, resulting in a \(O(n \log ^2{n})\) time algorithm. We also observe that the stabbing circle problem for S can be solved in optimal \(O(n^2)\) time and space by reducing the problem to computing the stabbing planes for a set of segments in 3D.



M. C. and C. S. were supported by projects MTM2012-30951 and Gen.Cat. DGR2014SGR46. E. K. and E. P. were supported by SNF project 20GG21-134355, under the ESF EUROCORES, EuroGIGA/VORONOI program. M. S. was supported by project LO1506 of the Czech Ministry of Education, Youth and Sports, and by project NEXLIZ CZ.1.07/2.3.00/30.0038, co-financed by the European Social Fund and the state budget of the Czech Republic.


  1. 1.
    Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L.,Palop, B., Sacristán, V.: The farthest color Voronoi diagram and related problems. In: 17th European Workshop on Computational Geometry, pp. 113–116 (2001)Google Scholar
  2. 2.
    Arkin, E.M., Dieckmann, C., Knauer, C., Mitchell, J.S., Polishchuk, V., Schlipf, L., Yang, S.: Convex transversals. Comput. Geom. 47(2), 224–239 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific, Singapore (2013)CrossRefzbMATHGoogle Scholar
  4. 4.
    Avis, D., Robert, J., Wenger, R.: Lower bounds for line stabbing. Inform. Process. Lett. 33(2), 59–62 (1989)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cheilaris, P., Khramtcova, E., Langerman, S., Papadopoulou, E.: A randomized incremental approach for the Hausdorff Voronoi diagram of non-crossing clusters. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 96–107. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee, M., Na, H.: Farthest-polygon Voronoi diagrams. Comput. Geom. 44(4), 234–247 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Claverol, M.: Problemas geométricos en morfología computacional. Ph.D. thesis, Universitat Politècnica de Catalunya (2004)Google Scholar
  8. 8.
    Claverol, M., Garijo, D., Grima, C.I., Márquez, A., Seara, C.: Stabbers of line segments in the plane. Comput. Geom. 44(5), 303–318 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Claverol, M., Garijo, D., Korman, M., Seara, C., Silveira, R.I.: Stabbing segments with rectilinear objects. In: Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp. 53–64. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  10. 10.
    Díaz-Báñez, J.M., Korman, M., Pérez-Lantero, P., Pilz, A., Seara, C., Silveira, R.I.: New results on stabbing segments with a polygon. Comput. Geom. 48(1), 14–29 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Edelsbrunner, H., Maurer, H., Preparata, F., Rosenberg, A., Welzl, E., Wood, D.: Stabbing line segments. BIT 22(3), 274–281 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear functions: algorithms and applications. Discrete Comput. Geom. 4, 311–336 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J. Comput. 15(2), 317–340 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces and its applications. Discrete Comput. Geom. 9(1), 267–291 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer, Heidelberg (1989)zbMATHGoogle Scholar
  17. 17.
    Papadopoulou, E., Lee, D.T.: The Hausdorff Voronoi diagram of polygonal objects: a divide and conquer approach. Int. J. Comput. Geom. Appl. 14(6), 421–452 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Papadopoulou, E.: The Hausdorff Voronoi diagram of point clusters in the plane. Algorithmica 40(2), 63–82 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rappaport, D.: Minimum polygon transversals of line segments. Int. J. Comput. Geom. Appl. 5(3), 243–256 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mercè Claverol
    • 1
  • Elena Khramtcova
    • 2
  • Evanthia Papadopoulou
    • 2
    Email author
  • Maria Saumell
    • 3
  • Carlos Seara
    • 1
  1. 1.Universitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Faculty of InformaticsUniversità della Svizzera italiana (USI)LuganoSwitzerland
  3. 3.Department of Mathematics and European Centre of Excellence NTISUniversity of West BohemiaPilsenCzech Republic

Personalised recommendations