Faster Information Gathering in Ad-Hoc Radio Tree Networks

  • Marek Chrobak
  • Kevin P. CostelloEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9644)


We study information gathering in ad-hoc radio networks. Initially, each node of the network has a piece of information called a rumor, and the overall objective is to gather all these rumors in the designated target node. The ad-hoc property refers to the fact that the topology of the network is unknown when the computation starts. Aggregation of rumors is not allowed, which means that each node may transmit at most one rumor in one step.

We focus on networks with tree topologies, that is we assume that the network is a tree with all edges directed towards the root, but, being ad-hoc, its actual topology is not known. We provide two deterministic algorithms for this problem. For the model that does not assume any collision detection nor acknowledgement mechanisms, we give an \(O(n\log \log n)\)-time algorithm, improving the previous upper bound of \(O(n\log n)\). We also show that this running time can be further reduced to O(n) if the model allows for acknowledgements of successful transmissions.



We thank the anonymous reviewers for constructive comments that helped us improve the presentation.


  1. 1.
    Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J. Comput. Syst. Sci. 43(2), 290–298 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anta, A.F., Mosteiro, M.A., Munoz, J.R.: Unbounded contention resolution in multiple-access channels. Algorithmica 67(3), 295–314 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bruschi, D., Del Pinto, M.: Lower bounds for the broadcast problem in mobile radio networks. Distrib. Comput. 10(3), 129–135 (1997)CrossRefGoogle Scholar
  4. 4.
    Chlebus, B.S., Gasieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broadcasting in ad hoc radio networks. Distrib. Comput. 15(1), 27–38 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Christersson, M., Gasieniec, L., Lingas, A.: Gossiping with bounded size messages in ad hoc radio networks. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 377–389. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Chrobak, M., Costello, K.: Faster information gathering in ad-hoc radio tree networks (2015). arXiv: 1512.02179
  7. 7.
    Chrobak, M., Costello, K., Gasieniec, L., Kowalski, D.R.: Information gathering in ad-hoc radio networks with tree topology. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 129–145. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Chrobak, M., Gasieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio networks. J. Algorithms 43(2), 177–189 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chrobak, M., Gasieniec, L., Rytter, W.: A randomized algorithm for gossiping in radio networks. Networks 43(2), 119–124 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio networks of unknown topology. Theor. Comput. Sci. 302(1–3), 337–364 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. J. Algorithms 60(2), 115–143 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Erdős, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union of \(r\) others. Israel J. Math. 51(1–2), 79–89 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gasieniec, L.: On efficient gossiping in radio networks. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 2–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Gasieniec, L., Radzik, T., Xin, Q.: Faster deterministic gossiping in directed ad hoc radio networks. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 397–407. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Kowalski, D.R.: On selection problem in radio networks. In: Proceedings of the Twenty-fourth Annual ACM Symposium on Principles of Distributed Computing, PODC 2005, pp. 158–166 (2005)Google Scholar
  16. 16.
    Kowalski, D.R., Pelc, A.: Faster deterministic broadcasting in ad hoc radio networks. SIAM J. Discrete Math. 18(2), 332–346 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kushilevitz, E., Mansour, Y.: An \(\varOmega (D\log (N/D))\) lower bound for broadcast in radio networks. SIAM J. Comput. 27(3), 702–712 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Liu, D., Prabhakaran, M.: On randomized broadcasting and gossiping in radio networks. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 340–349. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    De Marco, G.: Distributed broadcast in unknown radio networks. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 208–217 (2008)Google Scholar
  20. 20.
    De Marco, G., Kowalski, D.R.: Fast nonadaptive deterministic algorithm for conflict resolution in a dynamic multiple-access channel. SIAM J. Comput. 44(3), 868–888 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    De Marco, G., Kowalski, D.R.: Contention resolution in a non-synchronized multiple access channel. In: IEEE 27th International Symposium on Parallel Distributed Processing (IPDPS), pp. 525–533 (2013)Google Scholar
  22. 22.
    Strahler, A.N.: Hypsometric (area-altitude) analysis of erosional topology. Bull. Geol. Soc. Amer. 63, 1117–1142 (1952)CrossRefGoogle Scholar
  23. 23.
    Viennot, X.G.: A Strahler bijection between Dyck paths and planar trees. Discrete Math. 246, 317–329 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Xu, Y.: An \(O(n^{1.5})\) deterministic gossiping algorithm for radio networks. Algorithmica 36(1), 93–96 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of CaliforniaRiversideUSA
  2. 2.Department of MathematicsUniversity of CaliforniaRiversideUSA

Personalised recommendations