Improved Spanning Ratio for Low Degree Plane Spanners

  • Prosenjit Bose
  • Darryl HillEmail author
  • Michiel Smid
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9644)


We describe an algorithm that builds a plane spanner with a maximum degree of 8 and a spanning ratio of \({\approx }4.414\) with respect to the complete graph. This is the best currently known spanning ratio for a plane spanner with a maximum degree of less than 14.


  1. 1.
    Chew, P.: There is a planar graph almost as good as the complete graph. In: Proceedings of the Second Annual Symposium on Computational Geometry, SCG 1986, pp.169–177. ACM, New York (1986)Google Scholar
  2. 2.
    Dobkin, D., Friedman, S., Supowit, K.: Delaunay graphs are almost as good as complete graphs. Discrete & Comput. Geom. 5, 399–407 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Keil, J., Gutwin, C.: Classes of graphs which approximate the complete euclidean graph. Discrete & Comput. Geom. 7, 13–28 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Xia, G.: Improved upper bound on the stretch factor of Delaunay triangulations. In: Proceedings of the Twenty-Seventh Annual Symposium on Computational Geometry, SoCG 2011, pp. 264–273. ACM, New York (2011)Google Scholar
  5. 5.
    Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded degree and low weight. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 234–246. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Li, X.Y., Wang, Y.: Efficient construction of low weight bounded degree planar spanner. In: Warnow, T., Zhu, B. (eds.) Comput. Comb. Lecture Notes in Computer Science, vol. 2697, pp. 374–384. Springer, Berlin Heidelberg (2003)Google Scholar
  7. 7.
    Bose, P., Smid, M.H.M., Xu, D.: Delaunay and diamond triangulations contain spanners of bounded degree. Int. J. Comput. Geom. Appl. 19, 119–140 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kanj, I.A., Perković, L., Xia, G.: On spanners and lightweight spanners of geometric graphs. SIAM J. Comput. 39, 2132–2161 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bose, P., Carmi, P., Chaitman-Yerushalmi, L.: On bounded degree plane strong geometric spanners. J. Discrete Algorithms 15, 16–31 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bonichon, N., Gavoille, C., Hanusse, N., Perković, L.: Plane spanners of maximum degree six. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 19–30. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Bonichon, N., Kanj, I., Perković, L., Xia, G.: There are plane spanners of degree 4 and moderate stretch factor. Discrete & Comput. Geom. 53, 514–546 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bose, P., Keil, J.M.: On the stretch factor of the constrained Delaunay triangulation. In: 3rd International Symposium on Voronoi Diagrams in Science and Engineering, ISVD 2006, Banff, Alberta, Canada, pp. 25–31, 2–5 July 2006. IEEE Computer Society (2006)Google Scholar
  13. 13.
    Benson, R.: Euclidean Geometry and Convexity. McGraw-Hill, New York (1966)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations