Skip to main content

Polymer-Based Composite Structures: Processing and Applications

  • Chapter
  • First Online:

Abstract

The present chapter focuses on the processing and applications of polymer-based composite structures, as they constitute an important class of materials and share a significant part of engineering material market. These processing techniques are hand layup, vacuum bag, pressure bag, filament winding, pultrusion, resin transfer molding, vacuum-assisted resin transfer molding, compression molding, structural reaction injection molding, structural foam reaction injection molding, sandwich molding, etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agarwal BD, Broutman LJ (1990) Analysis and performance of fiber composites. Wiley, New York

    Google Scholar 

  2. Peters ST (ed) (1997) Handbook of composites. Chapman & Hall, London

    Google Scholar 

  3. Mallick PK (1993) Fibre-reinforced composites: materials, manufacturing, and design. Marcel Dekker, New York

    Google Scholar 

  4. Chung DDL (1994) Carbon fiber composites. Butterworth-Heinemann, Boston

    Google Scholar 

  5. Mazumdar SK (2002) Composites manufacturing: materials, product and process engineering. CRC Press, Boca Raton

    Google Scholar 

  6. Avila AF, Morais DTS (2005) A multiscale investigation based on variance analysis for hand lay-up composite manufacturing. Compos Sci Technol 65(6):827–838

    Article  Google Scholar 

  7. Otaka M (1997) Hand lay-up molding process. Japanese Patent JP 09,314,686

    Google Scholar 

  8. Mariatti M, Chum PK (2005) Effect of laminate configuration on the properties of glass fiber-reinforced plastics (GFRPs) mixed composites. J Reinf Plast Compos 24(16):1713–1721

    Article  Google Scholar 

  9. Andersson IM, Alenius S (1996) A comparison between measured and numerically calculated styrene concentrations in hand lay-up molding. Ann Occup Hyg 3(6):399–415

    Google Scholar 

  10. Rahamani H, Heyder S, Najafi M et al (2014) Mechanical performance of epoxy/carbon fiber laminated composites. J Reinf Plast Compos 33(8):733–740

    Article  Google Scholar 

  11. Chaple AR, Khedakar SS, Dharmadhikari SR et al (2013) Newly developed automatic lay-up process for manufacturing of FRP sheets. Int J Comput Eng Res 3(3):92–97

    Google Scholar 

  12. Vasanthanathan A, Nagaraj P, Muruganantham B (2013) On the fabrication of carbon fabric reinforced epoxy composite shell without joints and wrinkling. Steel Compos Struct 15(3):267–279

    Article  Google Scholar 

  13. Chapman MR, Watson RM, Anderson DA et al (2006) Composite sections for aircraft fuselages and other structures, and methods and systems for manufacturing such sections. US Patent 2,006,108,058

    Google Scholar 

  14. Liu L, Wang W, Liu Z (2006) Process for molding laminated board using high-energy focused ultrasound and high-pressure water tank. Chinese Patent 1,775,498

    Google Scholar 

  15. Caron MC (2005) Reusable vacuum bag for forming polymeric materials against the mold. US Patent 2,005,086,916

    Google Scholar 

  16. Hou TH, Jensen BJ (2005) Double vacuum bag process for resin matrix composite manufacturing. US Patent 2,005,253,309

    Google Scholar 

  17. Zhou C, Yang Q (2005) Vacuum bag pressing method for reinforcing structure with external bonding of fibre. Chinese Patent 1,641,130

    Google Scholar 

  18. Kaneko T, Mitani K, Tomoo S et al (2004) Prepregs and their fibre-reinforced plastics with decreased void and good mechanical strength manufactured by vacuum bag molding. Japanese Patent 2,004,346,190

    Google Scholar 

  19. Johnson K, Lewit S (2004) Curable liquid sealant used as vacuum bag in composite manufacturing. US Patent 2,004,046,291

    Google Scholar 

  20. Kook JS (2000) Method for vacuum molding of wet resin glass fibre-reinforced plastics. Korean Patent 2,000,067,592

    Google Scholar 

  21. Alms JB, Advani SG, Glencey JL (2011) Liquid composite molding control methodologies using Vacuum Induced Preform Relaxation. Compos Part A 42(1):57–65

    Article  Google Scholar 

  22. Harper A (2013) Why consider reusable vacuum bags. Reinf Plast 57(3):40–42

    Article  Google Scholar 

  23. Shima K (2006) Internal-pressure bag molding method for manufacturing hollow FRP moldings efficiently. Japanese Patent 2,006,130,875

    Google Scholar 

  24. Horibe I, Nishimura A, Honma K (2002) Production method of fibre-reinforced plastics. Japanese Patent 2,002,307,463

    Google Scholar 

  25. Dai F, Aota Y, Watanabe T (2001) Mandrels for pressure-bag molding and manufacture of shafts using them. Japanese Patent 2,001,030,278

    Google Scholar 

  26. Kanemaru R, Sanae T (2000) Manufacture of fibre-reinforced plastics (FRP) with complex structures by internal pressure molding using a flexible bag. Japanese Patent 2,000,334,851

    Google Scholar 

  27. Asano K, Nojima K (1997) Manufacture of full-sized FRP pipes by bag molding. Japanese Patent 09,123,196

    Google Scholar 

  28. Howard RD (1993) A method for preparing a fibre reinforced polymer composite. UK Patent 9,305,941

    Google Scholar 

  29. Antonucci V, Giordano M, Inserraimparato S et al (2001) Analysis of heat transfer in autoclave technology. Polym Compos 22(5):613–620

    Article  Google Scholar 

  30. Jiang J, Motogi S, Fukuda T (1998) Relation between interlaminar fracture toughness and pressure condition in autoclave molding process of GFRP composite laminates. J Soc Mater Sci Jpn 47(6):606–611

    Article  Google Scholar 

  31. Chen MY, Chen SM, Zeng LZ et al (1992) Dimensional control of polymer composite laminate. MRL Bull Res Dev 6(1):23–27

    Google Scholar 

  32. Boey FYC (1989) Development of an autoclave curing system for fiber reinforced polymer composites. Polym Test 8(6):375–384

    Article  Google Scholar 

  33. Beckwith SW (1998) Filament winding the string and the glue. Compos Fab 14(1):8–12

    Google Scholar 

  34. Munro M (1988) Review of manufacturing of fiber composite components by filament winding. Polym Compos 9(5):352–359

    Article  Google Scholar 

  35. Polini W, Sorrentino L (2005) Winding trajectory and winding time in robotized filament winding of asymmetric shape parts. J Compos Mater 39(15):1391–1411

    Article  Google Scholar 

  36. Parnas L, Ardic S (2001) Filament winding. In: Akovali G (ed) Handbook of composite fabrication, 1st edn. Rapra, Shropshire, pp 103–126

    Google Scholar 

  37. Sohl C (2001) Continuous molding of thermoset composites. In: Anthony K, Carl Z (eds) Comprehensive composite materials, vol 2, Polymer matrix composites. Elsevier, Oxford, pp 845–852

    Google Scholar 

  38. Martinec T, Mlynec J, Petru M (2015) Calculation of the robot trajectory for the optimum directional orientation of fibre placement in the manufacture of composite profile frames. Rob Comput Integr Manuf 35:42–54

    Article  Google Scholar 

  39. Zhang L, Du H, Liu L et al (2014) Analysis and design of smart mandrels using shape memory polymers. Compos Part B 59:230–237

    Article  Google Scholar 

  40. Rojas EV, Chapelle D, Perreux D et al (2014) Unified approach of filament winding applied to complex shape mandrels. Compos Struct 116:805–813

    Article  Google Scholar 

  41. Lam YC, Li J, Joshi SC (2003) Simultaneous optimization of die-heating and pull-speed in pultrusion of thermosetting composites. Polym Compos 24(1):199–209

    Article  Google Scholar 

  42. Trivisano A, Maffezzoli A, Kenny JM et al (1990) Mathematical modeling of the pultrusion of epoxy based composites. Adv Polym Technol 10(4):251–264

    Article  Google Scholar 

  43. Esfandeh M, Reza DAM, SABET SAR et al (2002) Investigation of factors affecting the surface quality of pultruded profiles. Iran J Polym Sci Technol 15(4):229–235

    Google Scholar 

  44. Murata T, Muranaka T (2002) Apparatus and method for continuous manufacture of fibre-reinforced plastic foam composites. Japan Patent 2,002,331,593

    Google Scholar 

  45. Methven JM, Ghaffariyan SR, Abidin AZ (2000) Manufacture of fiber-reinforced composites by microwave assisted pultrusion. Polym Compos 21(4):586–594

    Article  Google Scholar 

  46. Simacek P, Advani SG (2015) Simulating tape resin infiltration during thermoset pultrusion process. Compos Part A 72:115–126

    Article  Google Scholar 

  47. Boyd SW, Barton JMD, Thomsen OT et al (2010) Through thickness stress distributions in pultruded GRP materials. Compos Struct 92(3):662–668

    Article  Google Scholar 

  48. Belingardi G, Bevene AT, Koricho EG et al (2015) Alternative lightweight materials and component manufacturing technologies for vehicle frontal bumper beam. Compos Struct 120:483–495

    Article  Google Scholar 

  49. Otten V, Siebrecht D (2006) Resin-transfer-molding device arrangement and method for manufacturing a component. US Patent 2,006,186,580

    Google Scholar 

  50. Lawrence JM, Devillard M, Advani SG (2004) Design and testing of a new injection approach for liquid composite molding. J Reinf Plast Compos 23(15):1625–1638

    Article  Google Scholar 

  51. Devillard M, Hsiao KT, Gokce A et al (2003) On-line characterization of bulk permeability and race-tracking during the filling stage in resin transfer molding process. J Compos Mater 37(17):1525–1541

    Article  Google Scholar 

  52. Nielsen DR, Pitchumani R (2002) Closed-loop flow control in resin transfer molding using real-time numerical process simulations. Compos Sci Technol 62(2):283–298

    Article  Google Scholar 

  53. Mogavero J, Sun JQ, Advani SG (1997) A nonlinear control method for resin transfer molding. Polym Compos 18(3):412–417

    Article  Google Scholar 

  54. Ferland P, Guittard D, Trochu F (1996) Concurrent methods for permeability measurement in resin transfer molding. Polym Compos 17(1):149–158

    Article  Google Scholar 

  55. Kranbuehl DE, Kingsley P, Hart S et al (1994) In situ sensor monitoring and intelligent control of the resin transfer molding process. Polym Compos 15(4):299–305

    Article  Google Scholar 

  56. Hayward JS, Harris B (1990) Effect of process variables on the quality of RTM moldings. SAMPE J 26(3):39–46

    Google Scholar 

  57. Han SH, Cho FJ, Lee HC et al (2015) Study on high-speed RTM to reduce the impregnation time of carbon/epoxy composites. Compos Struct 119:50–58

    Article  Google Scholar 

  58. Yang B, Jin T, Bi F et al (2015) Influence of fabric shear and flow direction on void formation during resin transfer molding. Compos Part A 68:10–18

    Article  Google Scholar 

  59. Eck B, Cardona SC, Binetruy C et al (2015) Multi-objective composite part mechanical optimization enhanced by a Process Estimator. Compos Struct 119:620–629

    Article  Google Scholar 

  60. Tanaka Y, Yotsukura R (2006) Manufacture of fibre-reinforced resin articles by VARTM (vacuum-assisted resin transfer molding) and apparatus therefore. Japanese Patent 2,006,167,933

    Google Scholar 

  61. Dong C (2006) Development of a process model for the vacuum assisted resin transfer molding simulation by the response surface method. Compos Part A 37(9):1316–1324

    Article  Google Scholar 

  62. Kelkar AD, Tate JS, Chaphalkar P (2006) Performance evaluation of VARTM manufactured textile composites for the aerospace and defense applications. Mater Sci Eng B Solid 132(1–2):126–128

    Article  Google Scholar 

  63. Bender D, Schuster J, Heider D (2006) Flow rate control during vacuum-assisted resin transfer molding (VARTM) processing. Compos Sci Technol 66(13):2265–2271

    Article  Google Scholar 

  64. Tackitt KD, Walsh SM (2005) Experimental study of thickness gradient formation in the VARTM process. Mater Manuf Processes 20(4):607–62765

    Article  Google Scholar 

  65. Seyhan AT, Tayfur G, Karakurt M et al (2005) Artificial neural network (ANN) prediction of compressive strength of VARTM processed polymer composites. Comput Mater Sci 34(1):99–105

    Article  Google Scholar 

  66. Tuccillo F, Antonucci V, Calabro AM et al (2005) Practical and theoretic analysis of resin flow in vacuum assisted resin transfer molding processes. Macromol Symp 228(1):201–218

    Article  Google Scholar 

  67. Eum SH, Kim YH, Han JW et al (2005) A study on the mechanical properties of the honeycomb sandwich composites made by VARTM. Key Eng Mater 300(4):2746–2751

    Article  Google Scholar 

  68. Chen R, Dong C, Liang Z et al (2004) Flow modeling and simulation for vacuum assisted resin transfer molding process with the equivalent permeability method. Polym Compos 25(2):146–164

    Article  Google Scholar 

  69. Kamar NT, Hossain MM, Khomenko A et al (2015) Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Compos Part A 70:82–92

    Article  Google Scholar 

  70. Matsuzaki R, Kobayashi S, Todoroki A et al (2013) Flow control by progressive forecasting using numerical simulation during vacuum-assisted resin transfer molding. Compos Part A 45:79–87

    Article  Google Scholar 

  71. Hsiao KT, Heider D (2012) Vacuum assisted resin transfer molding (VARTM) in polymer matrix composites. In: Advani SG, Hsiao KT (eds) Manufacturing techniques for polymer matrix composites (PMCs), 1st edn. Woodhead, Cambridge, pp 310–347

    Chapter  Google Scholar 

  72. Dumont P, Orgeas L, Favier D et al (2007) Compression moulding of SMC: in situ experiments, modelling and simulation. Compos Part A 38(2):353–368

    Article  Google Scholar 

  73. Yen CLE, Lukas KS (2006) Preferential curing technique in compression molding of fibre-reinforced composites. US Patent 2,006,091,583

    Google Scholar 

  74. Odenberger PT, Andersson HM, Lundstroem TS (2004) Experimental flow-front visualization in compression molding of SMC. Compos Part A 35(10):1125–1134

    Article  Google Scholar 

  75. Zhang GP, Shen CY, Dai GC (2005) Flow behavior of glass mat reinforced polypropylene in compression molding. Boligang Fuhe Cailiao (Fiber Reinforced Plastics/Composite) 3:38–40

    Google Scholar 

  76. Jo SH, Kim EG (2002) Effect of product geometry on fiber orientation of compression-molded rib type products. J Mater Process Technol 130:156–160

    Article  Google Scholar 

  77. Hojo H, Kim EG, Tamakawa K (1987) The content distribution of compression-molded long fiber-reinforced thermoplastic products. Int Polym Proc 1(2):60–65

    Article  Google Scholar 

  78. Lee CC, Folgar F, Tucker CL (1984) Simulation of compression molding for fiber-reinforced thermosetting polymers. J Eng Ind Trans ASME 106(2):114–125

    Article  Google Scholar 

  79. Goodship V, Brzeski I, Wood BM et al (2014) Gas-assisted compression moulding of recycled GMT: effect of gas injection parameters. J Mater Process Technol 214(3):515–523

    Article  Google Scholar 

  80. Taketa I, Okabe T, Kitano A (2008) A new compression-molding approach using unidirectionally arrayed chopped strands. Compos Part A 39(12):1884–1890

    Article  Google Scholar 

  81. Levy A, Hubert P (2015) Interstrand void content evolution in compression moulding of randomly oriented strands (ROS) of thermoplastic composites. Compos Part A 70:121–131

    Article  Google Scholar 

  82. Donatti J (2003) The structural reaction injection molding process having void reduction. US Patent 2,003,155,687

    Google Scholar 

  83. Polushkin EY, Polushnkina OM, Malkin AY et al (2002) Modeling of structural reaction injection molding. Part II: comparison with experimental data. Polym Eng Sci 42(4):846–858

    Article  Google Scholar 

  84. Duh RJ, Mantell S, Vogel JH et al (2001) Optimization of cure kinetics parameter estimation for structural reaction injection molding/resin transfer molding. Polym Compos 22(6):730–741

    Article  Google Scholar 

  85. Castro J, Conover S, Wilkes C et al (1997) Manufacturing of composite links by structural reaction injection molding. Polym Compos 18(5):585–594

    Article  Google Scholar 

  86. McGeehan JA, Gillespie JW Jr, Hulway JA (1993) Processing/performance relationships considering voids in structural reaction injection molding. Polym Eng Sci 33(24):1627–1633

    Article  Google Scholar 

  87. Young WB, Fong KHLH, Lee LJ (1991) Flow simulation in molds with preplaced fiber mats. Polym Compos 12(6):391403

    Article  Google Scholar 

  88. Tang H, Wang J (2006) Summarization and research progress on structural reaction injection molding. Gongcheng Suliao Yingyong (Eng Plast Appl) 34(5):72–74

    Google Scholar 

  89. Deng X, Li DX, Chen JS et al (2012) Numerical simulation of the curing and cooling in reaction injection molding process of nylon 6. Appl Mech Mater 161:205–211. doi:10.4028/www.scientific.net/AMM.161.205

    Article  Google Scholar 

  90. Kapila A, Singh K, Arora G et al (2015) Effect of varying gate size on the air traps in injection molding. Int J Curr Eng Technol 5(1):161–166

    Google Scholar 

  91. Hashisaka K, Ue M, Tabata K (2006) Molds and molding of polyurethane foams with reduced voids and pinholes by using them. Japanese Patent 2,006,224,371

    Google Scholar 

  92. Shidaker TA, Bareis DW (2004) Unreinforced reaction injection molded structural foams. US Patent 2,004,192,800

    Google Scholar 

  93. Modesti M, Adriani V, Simioni F (2000) Chemical and physical blowing agents in structural polyurethane foams: simulation and characterization. Polym Eng Sci 40(9):2046–2057

    Article  Google Scholar 

  94. Tighe SC, Manzione LT (1988) Simulation of foaming in reaction injection molding. Polym Eng Sci 28(15):949–954

    Article  Google Scholar 

  95. Heim HP, Tromm M (2015) General aspects of foam injection molding using local precision mold opening technology. Polymer 56:111–118

    Article  Google Scholar 

  96. Li XF, Lau KT, Yin YS et al (2011) Reaction injection molding process and fireproof property of phenolic foam sandwich panel. Adv Mater Res 410:341–344

    Article  Google Scholar 

  97. Samkhaniani N, Gharehbaghi A, Ahmadi Z (2013) Numerical simulation of reaction injection molding with polyurethane foam. J Cell Plast 49(5):405–421

    Article  Google Scholar 

  98. Kohlitz S, Krawinkel S (2006) Procedure for the production of a multi-part sandwich structure. German Patent 102,004,052,852

    Google Scholar 

  99. Kato N, Kanemitsu Y (2005) Resin-made boxes having flat bottoms with less warpage manufactured by sandwich molding. Japanese Patent 2,005,075,422

    Google Scholar 

  100. Mitamura S, Aoki S, Seki T et al (2005) Fibre-reinforced laminates and their manufacture. Japanese Patent 2,005,305,673

    Google Scholar 

  101. Zanella G (2005) Process for fabrication of a lightweight composite part by molding. French Patent 2,863,933

    Google Scholar 

  102. Giehl S, Mitschang P (2005) Process integration: fibre-reinforced sandwich and profile structures in one step. Kunststoffe 2005(11):76–78

    Google Scholar 

  103. Lundstrom TS, Toll S (2003) Modelling of residual stresses and warpage in sandwich injection moulding. Int Polym Proc 18(1):95–106

    Article  Google Scholar 

  104. Kim NH, Isayev AI (2015) Birefringence and interface in sequential co-injection molding of amorphous polymers: simulation and experiment. Polym Eng Sci 55(1):88–106

    Article  Google Scholar 

  105. Zaverl M, Valerio O, Misra M et al (2014) Study of the effect of processing conditions on the co-injection of PBS/PBAT and PTT/PBT blends for parts with increased bio-content. J Appl Polym Sci 132(2):41278

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support provided by the Indian Space Research Organization, India, for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharma, S.D., Sowntharya, L., Kar, K.K. (2017). Polymer-Based Composite Structures: Processing and Applications. In: Kar, K. (eds) Composite Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49514-8_1

Download citation

Publish with us

Policies and ethics