Abstract
The morphological differentiation of bone marrow is fundamental for the diagnosis of leukemia. For the conventional cytological analysis the bone marrow aspirate smear is stained and examined by means of a light microscope. At first the cell density, the bone marrow fat content and qualitative changes of the cells are observed in a midlevel magnification. Afterwards, cells of different types are identified and counted. Especially this step is time-consuming, subjective, tedious and error-prone. Furthermore, repeated examinations of a slide may yield intra- and inter-observer variances. For that reason an automation of the bone marrow analysis is pursued. In the meantime semi-automated prototypes for the automated analysis are available where the determination of relevant regions is done manually. In order to accomplish a fully automated workflow the relevant regions have to be found automatically. In this work we propose a method for the automatic determination of relevant regions which is based on a decision tree using color features. 1024 virtual slides of bone marrow smears are used for the development and evaluation of the proposed approach. For the test dataset the accuracy of the trained decision tree classifier is 99.85 %, the sensitivity is 65.88 % and the specificity is 99.98 %. Also a color coded evaluation in the virtual slides is provided. With the proposed method it is possible to detect relevant regions automatically for the automated morphological analysis for the first time. This method provides a valuable suggestion of regions to analyze in high magnification with a high accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Freund M. Praktikum der Mikroskopischen H¨amatologie: Begründet von Fritz Heckner. Elsevier Health Sciences Germany; 2008.
Haferlach T, Bacher VU, Diem H, et al. Taschenatlas H¨amatologie: Mikroskopische und Klinische Diagnostik für die Praxis. Thieme; 2012.
Frick P. Blut- und Knochenmarksmorphologie: Einführender Atlas in die Morphologische H¨amatologie. Thieme; 2003.
Krappe S, Macijewski K, Eismann E, et al. Lokalisierung von knochenmarkzellen für die automatisierte morphologische analyse von knochenmarkpr¨aparaten. Proc BVM. 2014; p. 403–8.
Krappe S, Münzenmayer C, Evert A, et al. Dynamic programming for the segmentation of bone marrow cells. Proc BVM. 2015; p. 359–364.
Krappe S, Benz M, Wittenberg T, et al. Automated classification of bone marrow cells in microscopic images for diagnosis of leukemia: a comparison of two classification schemes with respect to the segmentation quality. Proc SPIE. 2015;9414:94143I–6.
Greaves I, Davies J, Musgrove P. Area identification of bone marrow smears using radial-basis function networks and the HSI colour model. Int Conf Image Process Appl. 1995; p. 129–33.
Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27(8):1226–38.
Schowe B, Morik K. Fast ensembles of minimum redundancy feature selection. Ensembles Mach Learn Appl. 2011;373:75–95.
Breiman L, Friedman J, Stone CJ, et al. Classification and Regression Trees. CRC press; 1984.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krappe, S., Leisering, R., Haferlach, T., Wittenberg, T., Münzenmayer, C. (2016). Automatic Detection of Relevant Regions for the Morphological Analysis of Bone Marrow Slides. In: Tolxdorff, T., Deserno, T., Handels, H., Meinzer, HP. (eds) Bildverarbeitung für die Medizin 2016. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49465-3_48
Download citation
DOI: https://doi.org/10.1007/978-3-662-49465-3_48
Publisher Name: Springer Vieweg, Berlin, Heidelberg
Print ISBN: 978-3-662-49464-6
Online ISBN: 978-3-662-49465-3
eBook Packages: Computer Science and Engineering (German Language)