Skip to main content

Automatic Detection of Relevant Regions for the Morphological Analysis of Bone Marrow Slides

  • Conference paper
Bildverarbeitung für die Medizin 2016

Part of the book series: Informatik aktuell ((INFORMAT))

  • 2920 Accesses

Abstract

The morphological differentiation of bone marrow is fundamental for the diagnosis of leukemia. For the conventional cytological analysis the bone marrow aspirate smear is stained and examined by means of a light microscope. At first the cell density, the bone marrow fat content and qualitative changes of the cells are observed in a midlevel magnification. Afterwards, cells of different types are identified and counted. Especially this step is time-consuming, subjective, tedious and error-prone. Furthermore, repeated examinations of a slide may yield intra- and inter-observer variances. For that reason an automation of the bone marrow analysis is pursued. In the meantime semi-automated prototypes for the automated analysis are available where the determination of relevant regions is done manually. In order to accomplish a fully automated workflow the relevant regions have to be found automatically. In this work we propose a method for the automatic determination of relevant regions which is based on a decision tree using color features. 1024 virtual slides of bone marrow smears are used for the development and evaluation of the proposed approach. For the test dataset the accuracy of the trained decision tree classifier is 99.85 %, the sensitivity is 65.88 % and the specificity is 99.98 %. Also a color coded evaluation in the virtual slides is provided. With the proposed method it is possible to detect relevant regions automatically for the automated morphological analysis for the first time. This method provides a valuable suggestion of regions to analyze in high magnification with a high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freund M. Praktikum der Mikroskopischen H¨amatologie: Begründet von Fritz Heckner. Elsevier Health Sciences Germany; 2008.

    Google Scholar 

  2. Haferlach T, Bacher VU, Diem H, et al. Taschenatlas H¨amatologie: Mikroskopische und Klinische Diagnostik für die Praxis. Thieme; 2012.

    Google Scholar 

  3. Frick P. Blut- und Knochenmarksmorphologie: Einführender Atlas in die Morphologische H¨amatologie. Thieme; 2003.

    Google Scholar 

  4. Krappe S, Macijewski K, Eismann E, et al. Lokalisierung von knochenmarkzellen für die automatisierte morphologische analyse von knochenmarkpr¨aparaten. Proc BVM. 2014; p. 403–8.

    Google Scholar 

  5. Krappe S, Münzenmayer C, Evert A, et al. Dynamic programming for the segmentation of bone marrow cells. Proc BVM. 2015; p. 359–364.

    Google Scholar 

  6. Krappe S, Benz M, Wittenberg T, et al. Automated classification of bone marrow cells in microscopic images for diagnosis of leukemia: a comparison of two classification schemes with respect to the segmentation quality. Proc SPIE. 2015;9414:94143I–6.

    Google Scholar 

  7. Greaves I, Davies J, Musgrove P. Area identification of bone marrow smears using radial-basis function networks and the HSI colour model. Int Conf Image Process Appl. 1995; p. 129–33.

    Google Scholar 

  8. Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27(8):1226–38.

    Google Scholar 

  9. Schowe B, Morik K. Fast ensembles of minimum redundancy feature selection. Ensembles Mach Learn Appl. 2011;373:75–95.

    Google Scholar 

  10. Breiman L, Friedman J, Stone CJ, et al. Classification and Regression Trees. CRC press; 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krappe, S., Leisering, R., Haferlach, T., Wittenberg, T., Münzenmayer, C. (2016). Automatic Detection of Relevant Regions for the Morphological Analysis of Bone Marrow Slides. In: Tolxdorff, T., Deserno, T., Handels, H., Meinzer, HP. (eds) Bildverarbeitung für die Medizin 2016. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49465-3_48

Download citation

Publish with us

Policies and ethics