Skip to main content

Gene and Cell Therapy for Inborn Errors of Metabolism

  • Chapter
  • First Online:
Inherited Metabolic Diseases

Abstract

Shortcomings in contemporary therapy for inborn errors of metabolism (IEM) support the need for the development of novel treatment modalities. Cell therapy and gene therapy offer the promise of permanent cures for these rare disorders. The fundamental bases for both therapeutic approaches along with the therapeutic challenges are outlined in this chapter. For either technique, success lays in the ability to stably and safely provide sufficient and physiologically relevant numbers of non-disease cells in a target tissue to significantly affect the disease phenotype. The experimental rationale for these treatment approaches has been proven in animal models, and this review will focus upon clinical attempts at cell and gene therapy in human patients. Recent clinical trial successes in hemophilia, inherited immunodeficiency, genetic retinopathies, lipoprotein lipase (LPL) deficiency, the cerebral degenerative form of X-linked adrenoleukodystrophy, and metachromatic leukodystrophy illustrate the future promise of cell and gene therapy in the treatment of IEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen KJ, Mifsud NA et al (2008) Cell-mediated rejection results in allograft loss after liver cell transplantation. Liver Transpl 14(5):688–694

    Article  PubMed  Google Scholar 

  • Ambrosino G, Varotto S et al (2005) Isolated hepatocyte transplantation for Crigler-Najjar syndrome type 1. Cell Transplant 14(2-3):151–157

    Article  PubMed  Google Scholar 

  • Bennett J, Ashtari M et al (2012) AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med 4(120):120ra115

    Article  Google Scholar 

  • Biffi A, Aubourg P et al (2011) Gene therapy for leukodystrophies. Hum Mol Genet 20(R1):R42–R53

    Article  CAS  PubMed  Google Scholar 

  • Biffi A, Montini E et al (2013) Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341(6148):1233158

    Article  PubMed  Google Scholar 

  • Blaese RM, Culver KW et al (1995) T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 270(5235):475–480

    Article  CAS  PubMed  Google Scholar 

  • Carrillo-Carrasco N, Chandler RJ et al (2010) Liver-directed recombinant adeno-associated viral gene delivery rescues a lethal mouse model of methylmalonic acidemia and provides long-term phenotypic correction. Hum Gene Ther 21(9):1147–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartier N, Aubourg P (2008) Hematopoietic stem cell gene therapy in Hurler syndrome, globoid cell leukodystrophy, metachromatic leukodystrophy and X-adrenoleukodystrophy. Curr Opin Mol Ther 10(5):471–478

    CAS  PubMed  Google Scholar 

  • Cartier N, Hacein-Bey-Abina S et al (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326(5954):818–823

    Article  CAS  PubMed  Google Scholar 

  • Cermak T, Doyle EL et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christ S, Huijbregts S et al (2010) Executive function in early-treated phenylketonuria: profile and underlying mechanisms. Mol Genet Metab 99(Suppl 1):S22–S32

    Article  CAS  PubMed  Google Scholar 

  • Christine CW, Starr PA et al (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73(20):1662–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dane AP, Cunningham SC et al (2009) Sexually dimorphic patterns of episomal rAAV genome persistence in the adult mouse liver and correlation with hepatocellular proliferation. Mol Ther 17(9):1548–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwish AA, Sokal E et al (2004) Permanent access to the portal system for cellular transplantation using an implantable port device. Liver Transpl 10(9):1213–1215

    Article  PubMed  Google Scholar 

  • Dayton RD, Wang DB et al (2012) The advent of AAV9 expands applications for brain and spinal cord gene delivery. Expert Opin Biol Ther 12(6):757–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhawan A, Mitry RR et al (2006) Hepatocyte transplantation for liver-based metabolic disorders. J Inherit Metab Dis 29(2-3):431–435

    Article  PubMed  Google Scholar 

  • Dickinson DJ, Ward JD et al (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10(10):1028–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Georgiev P et al (2006) Administration-route and gender-independent long-term therapeutic correction of phenylketonuria (PKU) in a mouse model by recombinant adeno-associated virus 8 pseudotyped vector-mediated gene transfer. Gene Ther 13(7):587–593

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, Harding CO et al (2008) Correction of murine PKU following AAV-mediated intramuscular expression of a complete phenylalanine hydroxylating system. Mol Ther 16(4):673–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong B, Nakai H et al (2010) Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 18(1):87–92

    Article  CAS  PubMed  Google Scholar 

  • Fang B, Eisensmith RC et al (1994) Gene therapy for phenylketonuria: phenotypic correction in a genetically deficient mouse model by adenovirus-mediated hepatic gene therapy. Gene Ther 1:247–254

    CAS  PubMed  Google Scholar 

  • Flotte TR (2013) Birth of a new therapeutic platform: 47 years of adeno-associated virus biology from virus discovery to licensed gene therapy. Mol Ther 21(11):1976–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flotte TR, Solow R et al (1992) Gene expression from adeno-associated virus vectors in airway epithelial cells. Am J Respir Cell Mol Biol 7(3):349–356

    Article  CAS  PubMed  Google Scholar 

  • Fox IJ, Chowdhury JR et al (1998) Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med 338(20):1422–1426

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Vandenberghe LH et al (2005) New recombinant serotypes of AAV vectors. Curr Gene Ther 5(3):285–297

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Allamarvdasht M et al (2006) Long-term correction of murine glycogen storage disease type Ia by recombinant adeno-associated virus-1-mediated gene transfer. Gene Ther 13(4):321–329

    Article  CAS  PubMed  Google Scholar 

  • Grompe M, Lindstedt S et al (1995) Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat Genet 10(4):453–460

    Article  CAS  PubMed  Google Scholar 

  • Grossman M, Rader DJ et al (1995) A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia. Nat Med 1(11):1148–1154

    Article  CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Le Deist F et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346(16):1185–1193

    Article  CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, von Kalle C et al (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348(3):255–256

    Article  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Hauer J et al (2010) Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 363(4):355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamman K, Clark H et al (2005) Low therapeutic threshold for hepatocyte replacement in murine phenylketonuria. Mol Ther 12(2):337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamman KJ, Winn SR et al (2011) Hepatocytes from wild-type or heterozygous donors are equally effective in achieving successful therapeutic liver repopulation in murine phenylketonuria (PKU). Mol Genet Metab 104(3):235–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansel MC, Gramignoli R et al (2014) The history and use of human hepatocytes for the treatment of liver diseases: the first 100 patients. Curr Protoc Toxicol 62:14 12 11–14 12 23

    Google Scholar 

  • Harding CO, Wild K et al (1998) Metabolic engineering as therapy for inborn errors of metabolism – development of mice with phenylalanine hydroxylase expression in muscle. Gene Ther 5(5):677–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding CO, Gillingham MB et al (2006) Complete correction of hyperphenylalaninemia following liver-directed, recombinant AAV2/8 vector-mediated gene therapy in murine phenylketonuria. Gene Ther 13(5):457–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermonat PL, Muzyczka N (1984) Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A 81(20):6466–6470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horslen SP, McCowan TC et al (2003) Isolated hepatocyte transplantation in an infant with a severe urea cycle disorder. Pediatrics 111(6 Pt 1):1262–1267

    Article  PubMed  Google Scholar 

  • Hsu PD, Lander ES et al (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwu WL, Muramatsu S et al (2012) Gene therapy for aromatic L-amino acid decarboxylase deficiency. Sci Transl Med 4(134):134ra161

    Article  Google Scholar 

  • Inagaki K, Piao C et al (2008) Frequency and spectrum of genomic integration of recombinant adeno-associated virus serotype 8 vector in neonatal mouse liver. J Virol 82(19):9513–9524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay MA, Manno CS et al (2000) Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 24(3):257–261

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Parveen N et al (2008) Treatment of Crigler-Najjar Syndrome type 1 by hepatic progenitor cell transplantation: a simple procedure for management of hyperbilirubinemia. Transplant Proc 40(4):1148–1150

    Article  CAS  PubMed  Google Scholar 

  • Koeberl DD, Alexander IE et al (1997) Persistent expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors. Proc Natl Acad Sci U S A 94(4):1426–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koeberl DD, Sun BD et al (2006) Early, sustained efficacy of adeno-associated virus vector-mediated gene therapy in glycogen storage disease type Ia. Gene Ther 13(17):1281–1289

    Article  CAS  PubMed  Google Scholar 

  • Laconi E, Laconi S (2002) Principles of hepatocyte repopulation. Semin Cell Dev Biol 13(6):433–438

    Article  PubMed  Google Scholar 

  • Lee KW, Lee JH et al (2007) Hepatocyte transplantation for glycogen storage disease type Ib. Cell Transplant 16(6):629–637

    Article  PubMed  Google Scholar 

  • Maguire AM, Simonelli F et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358(21):2240–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Yang L et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manno CS, Chew AJ et al (2003) AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101(8):2963–2972

    Article  CAS  PubMed  Google Scholar 

  • Manno CS, Pierce GF et al (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12(3):342–347

    Article  CAS  PubMed  Google Scholar 

  • Meyburg J, Hoffmann GF (2010) Liver, liver cell and stem cell transplantation for the treatment of urea cycle defects. Mol Genet Metab 100(Suppl 1):S77–S83

    Article  CAS  PubMed  Google Scholar 

  • Meyburg J, Das AM et al (2009) One liver for four children: first clinical series of liver cell transplantation for severe neonatal urea cycle defects. Transplantation 87(5):636–641

    Article  PubMed  Google Scholar 

  • Meyburg J, Hoerster F et al (2010) Monitoring of intraportal liver cell application in children. Cell Transplant 19(5):629–638

    Article  PubMed  Google Scholar 

  • Mingozzi F, High KA (2007) Immune responses to AAV in clinical trials. Curr Gene Ther 7(5):316–324

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki S, Mizukami H et al (2004) Long-term correction of hyperphenylalaninemia by AAV-mediated gene transfer leads to behavioral recovery in phenylketonuria mice. Gene Ther 11(13):1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Moscioni D, Morizono H et al (2006) Long-term correction of ammonia metabolism and prolonged survival in ornithine transcarbamylase-deficient mice following liver-directed treatment with adeno-associated viral vectors. Mol Ther 14(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Muraca M, Burlina AB (2005) Liver and liver cell transplantation for glycogen storage disease type IA. Acta Gastroenterol Belg 68(4):469–472

    CAS  PubMed  Google Scholar 

  • Muraca M, Gerunda G et al (2002) Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet 359(9303):317–318

    Article  PubMed  Google Scholar 

  • Muramatsu S, Fujimoto K et al (2010) A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18(9):1731–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair N, Rincon MY et al (2014) Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy. Blood 123(20):3195–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai H, Herzog RW et al (1998) Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood 91(12):4600–4607

    CAS  PubMed  Google Scholar 

  • Nakai H, Storm TA et al (2000) Recruitment of single-stranded recombinant adeno-associated virus vector genomes and intermolecular recombination are responsible for stable transduction of liver in vivo. J Virol 74(20):9451–9463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathwani AC, Gray JT et al (2006) Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 107(7):2653–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathwani AC, Tuddenham EG et al (2011) Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365(25):2357–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathwani AC, Reiss UM et al (2014) Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 371(21):1994–2004

    Article  PubMed  PubMed Central  Google Scholar 

  • Newnham T, Hardikar W et al (2008) Liver transplantation for argininosuccinic aciduria: clinical, biochemical, and metabolic outcome. Liver Transpl 14(1):41–45

    Article  PubMed  Google Scholar 

  • Overturf K, Al-Dhalimy M et al (1996) Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat Genet 12(3):266–273

    Article  CAS  PubMed  Google Scholar 

  • Porteus MH (2006) Mammalian gene targeting with designed zinc finger nucleases. Mol Ther 13(2):438–446

    Article  CAS  PubMed  Google Scholar 

  • Puppi J, Tan N et al (2008) Hepatocyte transplantation followed by auxiliary liver transplantation – a novel treatment for ornithine transcarbamylase deficiency. Am J Transplant 8(2):452–457

    Article  CAS  PubMed  Google Scholar 

  • Ran FA, Cong L et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raper SE, Chirmule N et al (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80(1-2):148–158

    Article  CAS  PubMed  Google Scholar 

  • Sarkar R, Tetreault R et al (2004) Total correction of hemophilia A mice with canine FVIII using an AAV 8 serotype. Blood 103(4):1253–1260

    Article  CAS  PubMed  Google Scholar 

  • Shapiro E, Krivit W et al (2000) Long-term effect of bone-marrow transplantation for childhood-onset cerebral X-linked adrenoleukodystrophy. Lancet 356(9231):713–718

    Article  CAS  PubMed  Google Scholar 

  • Singh RH, Rohr F et al (2014) Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genet Med 16(2):121–131

    Google Scholar 

  • Smyth Templeton N (2015) Gene and cell therapy: therapeutic mechanisms and strategies. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Snyder RO, Miao CH et al (1997) Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet 16(3):270–276

    Article  CAS  PubMed  Google Scholar 

  • Sokal EM, Smets F et al (2003) Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: technique, safety, and metabolic follow-up. Transplantation 76(4):735–738

    Article  PubMed  Google Scholar 

  • Stephenne X, Najimi M et al (2005) Cryopreserved liver cell transplantation controls ornithine transcarbamylase deficient patient while awaiting liver transplantation. Am J Transplant 5(8):2058–2061

    Article  PubMed  Google Scholar 

  • Stephenne X, Najimi M et al (2006) Sustained engraftment and tissue enzyme activity after liver cell transplantation for argininosuccinate lyase deficiency. Gastroenterology 130(4):1317–1323

    Article  PubMed  Google Scholar 

  • Strom SC, Fisher RA et al (1997) Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation 63(4):559–569

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Zhang H et al (2005) Efficacy of an adeno-associated virus 8-pseudotyped vector in glycogen storage disease type II. Mol Ther 11(1):57–65

    Article  CAS  PubMed  Google Scholar 

  • Testa F, Maguire AM et al (2013) Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology 120(6):1283–1291

    Article  PubMed  PubMed Central  Google Scholar 

  • Tratschin JD, West MH et al (1984) A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol 4(10):2072–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanZutphen KH, Packman W et al (2007) Executive functioning in children and adolescents with phenylketonuria. Clin Genet 72(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Viecelli HM, Harbottle RP et al (2014) Treatment of phenylketonuria using minicircle-based naked-DNA gene transfer to murine liver. Hepatology 60(3):1035–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vockley J, Andersson HC et al (2014) Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med 16(2):188–200

    Article  CAS  PubMed  Google Scholar 

  • Walter JH, White FJ (2004) Blood phenylalanine control in adolescents with phenylketonuria. Int J Adolesc Med Health 16(1):41–45

    Article  PubMed  Google Scholar 

  • Wang L, Calcedo R et al (2005) Sustained correction of disease in naive and AAV2-pretreated hemophilia B dogs: AAV2/8-mediated, liver-directed gene therapy. Blood 105(8):3079–3086

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang H et al (2012) Hepatic gene transfer in neonatal mice by adeno-associated virus serotype 8 vector. Hum Gene Ther 23(5):533–539

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Mou H et al (2015) Adenovirus-mediated somatic genome editing of pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther 26(7):432–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Xue W et al (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32(6):551–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Dong X et al (2012) Single liver lobe repopulation with wildtype hepatocytes using regional hepatic irradiation cures jaundice in Gunn rats. PLoS One 7(10):e46775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cary O. Harding MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harding, C.O. (2017). Gene and Cell Therapy for Inborn Errors of Metabolism. In: Hoffmann, G., Zschocke, J., Nyhan, W. (eds) Inherited Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49410-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49410-3_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49408-0

  • Online ISBN: 978-3-662-49410-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics