Skip to main content

Exploiting GPU for Large Scale Fingerprint Identification

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9621))

Included in the following conference series:

  • 2307 Accesses

Abstract

Fingerprints are the most used biometrics features for identification. Although state-of-the-art algorithms are very accurate, but the need for fast processing speed for databases containing millions fingerprints is highly demanding. GPU devices are widely used in parallel computing tasks for its efficiency and low-cost. In this paper, we propose to adapt minutia cylinder-code (MCC) matching algorithm, an efficient algorithm in term of accuracy to GPU. The proposed method fits well with the architecture of the GPU that makes it easy to implement. The results of our experiments with a GTX- 680 device show that the proposed algorithm can perform 8.5 millions matches in a second that is suitable for real time identification systems having databases containing millions of fingerprints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, London (2009)

    Book  MATH  Google Scholar 

  2. Cappelli, R., Maio, D., Maltoni, D., Wayman, J.L., Jain, A.K.: Performance evaluation of fingerprint verification systems. IEEE Trans. Pattern Anal. Mach. Intell. 28, 3–18 (2006)

    Article  Google Scholar 

  3. Chikkerur, S., Cartwright, A.N., Govindaraju, V.: K-plet and Coupled BFS: a graph based fingerprint representation and matching algorithm. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 309–315. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Cappelli, R., Ferrara, M., Maltoni, D.: Minutia cylinder-code: A new representation and matching technique for fingerprint recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32, 2128–2141 (2010)

    Article  Google Scholar 

  5. Xu, W., Chen, X., Feng, J.: A Robust Fingerprint Matching Approach: Growing and Fusing of Local Structures. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 134–143. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Feng, J.: Combining minutiae descriptors for fingerprint matching. Pattern Recogn. 41, 342–352 (2008)

    Article  MATH  Google Scholar 

  7. Wang, X., Li, J., Niu, Y.: Fingerprint matching using orientation codes and polylines. Pattern Recogn. 40, 3164–3177 (2007)

    Article  MATH  Google Scholar 

  8. Feng, J., Ouyang, Z., Cai, A.: Fingerprint matching using ridges. Pattern Recogn. 39, 2131–2140 (2006)

    Article  MATH  Google Scholar 

  9. Qi, J., Yang, S., Wang, Y.: Fingerprint matching combining the global orientation field with minutia. Pattern Recogn. Lett. 26, 2424–2430 (2005)

    Article  Google Scholar 

  10. Tico, M., Kuosmanen, P.: Fingerprint matching using an orientation-based minutia descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1009–1014 (2003)

    Article  Google Scholar 

  11. Medina-Pérez, M.A., García-Borroto, M., Gutierrez-Rodriguez, A.E., Altamirano-Robles, L.: Robust fingerprint verification using m-triplets. In: International Conference on Hand-Based Biometrics (ICHB 2011), Hong Kong, pp. 1–5 (2011)

    Google Scholar 

  12. Gutierrez, P.D., Lastra, M., Herrera, F., Benitez, J.M.: A high performance fingerprint matching system for large databases based on GPU. IEEE Trans. Inf. Forensics Secur. 9(1), 62–71 (2014)

    Article  Google Scholar 

  13. Cappelli, R., Ferrara, M., Maltoni, D.: Large-scale fingerprint identification on GPU. Inf. Sci. 306, 1–20 (2015)

    Article  Google Scholar 

  14. Peralta, D., Triguero, I., Sanchez-Reillo, R., Herrera, F., Benitez, J.M.: Fast fingerprint identification for large databases. Pattern Recogn. 47(2), 588–602 (2014)

    Article  Google Scholar 

  15. Luebke, D., et al.: GPGPU: general-purpose computation on graphics hardware. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC 2006 (2006)

    Google Scholar 

  16. Cappelli, R., Maio, D.: State-of-the-art in fingerprint classification. In: Ratha, N., Bolle, R. (eds.) Automatic Fingerprint Recognition Systems, pp. 183–205. Springer, New York (2004)

    Chapter  Google Scholar 

  17. Hong, J.H., Min, J.K., Cho, U.K., Cho, S.B.: Fingerprint classification using one-vs-all support vector machines dynamically ordered with naive Bayes classifiers. Pattern Recogn. 41(2), 662–671 (2008)

    Article  MATH  Google Scholar 

  18. Cappelli, R., Ferrara, M., Maltoni, D.: Fingerprint indexing based on minutia cylinder code. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 1051–1057 (2010)

    Article  Google Scholar 

  19. Bhanu, B., Tan, X.: A triplet based approach for indexing of fingerprint database for identification. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 205–210. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Unique Identification Authority of India, Role of Biometric Technology in Aadhaar Enrollment (2012)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS 2012, pp. 1106–1114 (2012)

    Google Scholar 

  22. Zhang, Y., Yi, D., Wei, B., Zhuang, Y.: A GPU-accelerated non-negative sparse latent semantic analysis algorithm for social tagging data. Inform. Sci. 281, 687–702 (2014)

    Article  MathSciNet  Google Scholar 

  23. Friedrichs, M., Eastman, P., Vaidyanathan, V., Houston, M., Legrand, S., Beberg, A., et al.: Accelerating molecular dynamic simulation on graphics processing units. J. Comput. Chem. 30(6), 864–872 (2009)

    Article  Google Scholar 

  24. Schatz, M., Trapnell, C., Delcher, A., Varshney, A.: High-throughput sequence alignment using graphics processing units. BMC Bioinformat. 8, 474 (2007)

    Article  Google Scholar 

  25. Medina-Pérez, M.A., Loyola-González, O., Gutierrez-Rodríguez, A.E., García-Borroto, M., Altamirano-Robles, L.: Introducing an experimental framework in C# for fingerprint recognition. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-Lopez, J.A., Salas-Rodríguez, J., Suen, C.Y. (eds.) MCPR 2014. LNCS, vol. 8495, pp. 132–141. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Hai Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Le, H.H., Nguyen, N.H., Nguyen, T.T. (2016). Exploiting GPU for Large Scale Fingerprint Identification. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49381-6_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49381-6_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49380-9

  • Online ISBN: 978-3-662-49381-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics