Individual Theta/Beta Based Algorithm for Neurofeedback Games to Improve Cognitive Abilities

Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9550)

Abstract

NeuroFeedback Training (NFT) can be used to enhance cognitive abilities in healthy adults. In this paper, we propose and implement a neurofeedback system which integrates an individual theta/beta based neurofeedback algorithm in a “Shooting” game. The system includes an algorithm of calculation of an Individual Alpha Peak Frequency (IAPF), Individual Alpha Band Width (IABW) and individual theta/beta ratio. Use of the individual theta/beta ratio makes the neurofeeback training more effective. We study the effectiveness of the proposed neurofeedback system with five subjects taking 6 NFT sessions each. As the neurofeedback protocol based on the power of individual theta/beta ratio training is used, each neurofeedback training session includes an IAPF, IABW and individual theta/beta ratio calculation. Subjects play the “Shooting” game to train cognitive abilities. The feedback on the player’s brain state is given by the color of the shooter’s target. If the target turns from “blue” to “red”, the player is in the “desired” brain state and is able to shoot. IAPF and IABW parameters calculated before and after NFT sessions are used for neurofeedback efficiency analysis. Our hypothesis is that after the neurofeedback training by playing the “Shooting” game, the individual alpha peak frequency increases. The results show that all subjects overall have a higher individual alpha peak frequency values right after the training or the next day.

Keywords

EEG Neurofeedback training Neurofeedback game Individual alpha peak frequency Individual alpha band width Theta/beta training 

References

  1. 1.
    Fernández, T., Harmony, T., Fernández-Bouzas, A., Díaz-Comas, L., Prado-Alcalá, R., Valdés-Sosa, P., Otero, G., Bosch, J., Galán, L., Santiago-Rodríguez, E., Aubert, E., García-Martínez, F.: Changes in EEG current sources induced by neurofeedback in learning disabled children. an exploratory study. Appl Psychophysiol Biofeedback 32(3−4), 169–183 (2007)CrossRefGoogle Scholar
  2. 2.
    Zoefel, B., Huster, R.J., Herrmann, C.S.: Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage 54(2), 1427–1431 (2011)CrossRefGoogle Scholar
  3. 3.
    Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., Klimesch, W.: Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Appl. Psychophysiol. Biofeedback 30(1), 1–10 (2005)CrossRefGoogle Scholar
  4. 4.
    Egner, T., Gruzelier, J.H.: Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. NeuroReport 12(18), 4155–4159 (2001)CrossRefGoogle Scholar
  5. 5.
    Klimesch, W., Doppelmayr, M., Schimke, H., Pachinger, T.: Alpha frequency, reaction time, and the speed of processing information. J. Clin. Neurophysiol. 13(6), 511–518 (1996)CrossRefGoogle Scholar
  6. 6.
    Bazanova, O., Aftanas, L.: Individual EEG alpha activity analysis for enhancement neurofeedback efficiency: two case studies. J. Neurother. 14(3), 244–253 (2010)CrossRefGoogle Scholar
  7. 7.
    Lubar, J.F.: Neurofeedback for the management of attention-deficit/hyperactivity disorders. In: Schwartz, M.S. (ed.) Biofeedback: A Practitioner’s Guide, 2nd edn, pp. 493–522. Guilford Press, New York (1995)Google Scholar
  8. 8.
    Clarke, A.R., Barry, R.J., McCarthy, R., Selikowitz, M.: Electroencephalogram differences in two subtypes of attention-deficit/hyperactivity disorder. Psychophysiology 38(2), 212–221 (2001)CrossRefGoogle Scholar
  9. 9.
    Egner, T., Gruzelier, J.H.: EEG biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials. Clin. Neurophysiol. Official J. Int. Fed. Clin. Neurophysiol. 115(1), 131–139 (2004)CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Sourina, O., Hou, X.: Neurofeedback games to improve cognitive abilities. In: 2014 International Conference on Cyberworlds (CW), 6–8 Oct 2014, pp. 161−168 (2014)Google Scholar
  11. 11.
    Vernon, D., Dempster, T., Bazanova, O., Rutterford, N., Pasqualini, M., Andersen, S.: Alpha neurofeedback training for performance enhancement: reviewing the methodology. J. Neurother. 13(4), 214–227 (2009)CrossRefGoogle Scholar
  12. 12.
    Cho, M.K., Jang, H.S., Jeong, S.-H., Jang, I.-S., Choi, B.-J., Lee, M.-G.T.: Alpha neurofeedback improves the maintaining ability of alpha activity. NeuroReport 19(3), 315–317 (2008)CrossRefGoogle Scholar
  13. 13.
    Fell, J., Elfadil, H., Klaver, P., Röschke, J., Elger, C.E., Fernandez, G.: Covariation of spectral and nonlinear EEG measures with alpha biofeedback. Int. J. Neurosci. 112(9), 1047–1057 (2002)CrossRefGoogle Scholar
  14. 14.
    Yamaguchi, H.: Characteristics of alpha-enhancement biofeedback training with eyes closed. Tohoku Psychologica Folia (1980)Google Scholar
  15. 15.
    Sanei, S., Chambers, J.: EEG Signal Processing. Wiley, Chichester (2007)CrossRefGoogle Scholar
  16. 16.
    Gruzelier, J.H.: EEG-neurofeedback for optimising performance, I: A review of cognitive and affective outcome in healthy participants, Neuroscience & Biobehavioral Reviews (2013)Google Scholar
  17. 17.
    Becerra, J., Fernandez, T., Roca-Stappung, M., Diaz-Comas, L., Galán, L., Bosch, J., Espino, M., Moreno, A.J., Harmony, T.: Neurofeedback in healthy elderly human subjects with electroencephalographic risk for cognitive disorder. J. Alzheimers Dis. 28(2), 357–367 (2012)Google Scholar
  18. 18.
    Escolano, C., Aguilar, M., Minguez, J.: EEG-based upper alpha neurofeedback training improves working memory performance. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 2327–2330 (2011)Google Scholar
  19. 19.
    Sammler, D., Grigutsch, M., Fritz, T., Koelsch, S.: Music and emotion: Electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 44(2), 293–304 (2007)CrossRefGoogle Scholar
  20. 20.
    Bazanova, O., Aftanas, L.: Individual measures of electroencephalogram alpha activity and non-verbal creativity. Neurosci. Behav. Physiol. 38(3), 227–235 (2008)CrossRefGoogle Scholar
  21. 21.
    Escolano, C., Aguilar, M., Minguez, J.: EEG-based upper alpha neurofeedback training improves working memory performance. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 2327−2330 (2011)Google Scholar
  22. 22.
    Vernon, D., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., Gruzelier, J.: The effect of training distinct neurofeedback protocols on aspects of cognitive performance. Int. J. Psychophysiol. 47(1), 75–85 (2003)CrossRefGoogle Scholar
  23. 23.
    Egner, T., Gruzelier, J.H.: Ecological validity of neurofeedback: modulation of slow wave EEG enhances musical performance. NeuroReport 14(9), 1221–1224 (2003)CrossRefGoogle Scholar
  24. 24.
    Wang, J.-R., Hsieh, S.: Neurofeedback training improves attention and working memory performance. Clin. Neurophysiol. Official J. Int. Fed. Clin. Neurophysiol. 124(12), 2406–2420 (2013)CrossRefGoogle Scholar
  25. 25.
    Pope, A.T., Bogart, E.H.: Extended attention span training system: video game neurotherapy for attention deficit disorder. Child Study J. 26(1), 39–50 (1996)Google Scholar
  26. 26.
    Fuchs, T., Birbaumer, N., Lutzenberger, W., Gruzelier, J.H., Kaiser, J.: Neurofeedback treatment for attention-deficit/hyperactivity disorder in children a comparison with methylphenidate. Appl. Psychophysiol. Biofeedback 28(1), 1–12 (2003)CrossRefGoogle Scholar
  27. 27.
    Gevins, A., Smith, M.E.: Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb. Cortex 10(9), 829–839 (2000)CrossRefGoogle Scholar
  28. 28.
    Anokhin, A., Vogel, F.: EEG alpha rhythm frequency and intelligence in normal adults. Intelligence 23(1), 1–14 (1996)CrossRefGoogle Scholar
  29. 29.
    Klimesch, W., Schimke, H., Pfurtscheller, G.: Alpha frequency, cognitive load and memory performance. Brain Topogr. 5(3), 241–251 (1993)CrossRefGoogle Scholar
  30. 30.
    Suldo, S.M., Olson, L.A., Evans, J.R.: Quantitative EEG evidence of increased alpha peak frequency in children with precocious reading ability. J. Neurother. 5(3), 39–50 (2002)CrossRefGoogle Scholar
  31. 31.
    Finnigan, S., Robertson, I.H.: Resting EEG theta power correlates with cognitive performance in healthy older adults. Psychophysiology 48(8), 1083–1087 (2011). doi:10.1111/j.1469-8986.2010.01173.x CrossRefGoogle Scholar
  32. 32.
    McEvoy, L., Smith, M., Gevins, A.: Test–retest reliability of cognitive EEG. Clin. Neurophysiol. 111(3), 457–463 (2000)CrossRefGoogle Scholar
  33. 33.
    Oppenheim, A.V., Schafer, R.W.: Digital Signal Processing. Prentice-Hall, Englewood Cliffs (1975)MATHGoogle Scholar
  34. 34.
  35. 35.
    American Electroencephalographic Society: American electroencephalographic society guidelines for standard electrode position nomenclature. J. Clin. Neurophysiol. 8(2), 200–202 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yisi Liu
    • 1
  • Xiyuan Hou
    • 1
  • Olga Sourina
    • 1
  • Olga Bazanova
    • 2
  1. 1.Fraunhofer IDM@NTUNanyang Technological UniversitySingaporeSingapore
  2. 2.Scientific Research Institute of Physiology and Basic MedicineRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations