Skip to main content

Continuous and Discrete Time Modeling

  • Chapter
  • First Online:
Sustainable Asset Accumulation and Dynamic Portfolio Decisions

Part of the book series: Dynamic Modeling and Econometrics in Economics and Finance ((DMEF,volume 18))

  • 780 Accesses

Abstract

As mentioned, the transition of a continuous time model into a discrete time model is not an easy issue. We discuss here various discretization procedures to turn continuous time into discrete time models. There are many methods to convert continuous time models into discrete time variants. The main discretization methods are the Euler method, the Milstein method and a new local linearization method. All those will be illustrated here to obtain discrete-time approximate models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The stochastic integration with respect to dW t is the Itô integration, see Karatzas and Shreve (1991).

  2. 2.

    If the process deviates from \(\frac{c} {\beta }\) (the mean), for example, \(X_{t}> \frac{c} {\beta }\), then the process is drifting down and it is pulled up when \(X_{t} <\frac{c} {\beta }\).

  3. 3.

    The application of the Milstein method for approximating diffusion processes is independently developed by the authors. In the appendix of this chapter we present our application and show that it is equivalent to that of Elerian (1998).

  4. 4.

    The white noise in the discrete-time models is represented by Brownian increments Δ W t .

  5. 5.

    See Lo (1988).

  6. 6.

    See Sect. 7.3.

  7. 7.

    We suppose this is the main reason for Shoji and Ozaki applying the NLL method for the nonlinear drift case in Shoji and Ozaki (1998).

  8. 8.

    See Sect. 7.6.

  9. 9.

    See Kloeden and Platen (1992, 345).

  10. 10.

    See Kloeden and Platen (1992, Chap. 10).

  11. 11.

    The data source is “OECD—Main Economic Indicators/immediate rates”.

  12. 12.

    See Gallant and White (1990) Definition 3.13, p. 27 with \(Z_{ni} = U_{i}U_{i-k}\). One can see v m  = 0 when m ≥ k.

  13. 13.

    See Gallant and White (1990), Theorem 5.3, p. 76. The conditions of the theorem are satisfied because under the null U i is independent and \(v_{n} = n - k\).

  14. 14.

    See Breiman (1973, p. 189).

  15. 15.

    Because the variance is normalized to 1, the concentration of the distribution around 0 let the variance smaller. In order to keep the variance as 1, there must be more weight in the tail.

  16. 16.

    We undertake simulation with an interval 0. 01 and then pick up the simulated series with an interval 1.

  17. 17.

    See Box et al. (1994).

  18. 18.

    See Engle (1982).

  19. 19.

    There is a thick tail effect if the kurtosis, defined as \(\frac{E(\epsilon ^{4})} {(E(\epsilon ^{2}))^{2}}\), is greater than 3—the kurtosis of normal distribution.

  20. 20.

    See Brenner et al. (1996, p. 95) “The Ljung-Box Q(ε t ∕σ t ) statistics indicate that both models have significant serial correlation in the residuals.”

  21. 21.

    See Bollerslev (1986).

  22. 22.

    This value has been proposed by the CIR model, see Cox et al. (1985b).

  23. 23.

    See for example, Diebold et al. (2006).

Bibliography

  • Ait-Sahalia, Y. (1996). Testing continuous-time models of the spot interest rate. The Review of Financial Studies, 9(2), 385–426.

    Article  Google Scholar 

  • Ait-Sahalia, Y. (1999). Transition densities for interest rate and other nonlinear diffusions. Journal of Finance, 54(4), 1361–1395.

    Article  Google Scholar 

  • Ait-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach. Econometrica, 70, 223–262.

    Article  Google Scholar 

  • Andersen, T., & Lund, J. (1997). Estimating continuous-time stochastic volatility models of the short-term interest rate. Journal of Econometrics, 77, 343–377.

    Article  Google Scholar 

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.

    Article  Google Scholar 

  • Box, G., Jenkins, G., & Reinsel, G. (1994). Time series analysis (3rd ed.). Prentice Hall.

    Google Scholar 

  • Box, G., & Pierce, D. (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of American Statistical Association, 65, 1509–1526.

    Article  Google Scholar 

  • Breiman, L. (1973). Statistics. Boston, MA: Houghton Mifflin.

    Google Scholar 

  • Brenner, R., Harjes, R., & Kroner, K. (1996). Another look at models of the short-term interest rate. Journal of Financial and Quantitative Analysis, 31(1), 85–107.

    Article  Google Scholar 

  • Chan, K., Karolyi, G., Longstaff, F., & Sanders, A. (1992). An empirical comparison of alternative models of the short-term interest rate. Journal of Finance, 47(3), 1209–1227.

    Article  Google Scholar 

  • Cox, J., Ingersoll, J., & Ross, S. (1985a). An intertemporal general equilibrium model of asset prices. Econometrica, 53(2), 363–384.

    Article  Google Scholar 

  • Cox, J., Ingersoll, J., & Ross, S. (1985b). A theory of the term structure of interest rates. Econometrica, 53(2), 385–407.

    Article  Google Scholar 

  • Dacunha-Castelle, D., & Florens-Zmirou, D. (1986). Estimation of the coefficients of a diffusion from discrete observations. Stochastics, 19, 263–284.

    Article  Google Scholar 

  • Diebold, F.X., Rudebusch, G.D., & Auroba, S.B. (2006). The macroeconomy and the yield curve: a dynamic latent factor approach. Journal of Econometrics, 131, 309–338.

    Article  Google Scholar 

  • Duffie, D., & Glynn, P. (2004). Estimation of continuous time Markov processes sampled at random time intervals. Econometrica, 72, 1773–1808.

    Article  Google Scholar 

  • Durbin, J. (1970). Testing for serial correlation in least-squares regression when some of the regressors are lagged dependent variables. Biometrika, 38, 410–421.

    Google Scholar 

  • Elerian, O. (1998). A note on the existence of a closed form conditional transition density for the Milstein scheme. http://www.nuff.ox.ac.uk/users/elerian/milpaper.pdf

    Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987–1007.

    Article  Google Scholar 

  • Gallant, A., & Tauchen, G. (1996). Which moments to match. Econometric Theory, 12, 657–681.

    Article  Google Scholar 

  • Gallant, A., & White, H. (1990). A unified theory of estimation and inference for nonlinear dynamic system. Journal of Economic Literature, 28(1), 90–92.

    Google Scholar 

  • Gourieroux, C., Monfort, A., & Renault, E. (1993). Indirect inference. Journal of Applied Econometrics, 8, 85–118.

    Article  Google Scholar 

  • Hansen, L., & Scheinkman, J. (1995). Back to the future: Generating moment implications for continuous-time Markov processes. Econometrica, 63(4), 767–804.

    Article  Google Scholar 

  • Karatzas, I., & Shreve, S. (1991). Brownian motion and stochastic calculus. New York: Springer.

    Google Scholar 

  • Kloeden, P. E., & Platen, E. (1992). Numerical solution of stochastic differential equations. Berlin: Springer.

    Book  Google Scholar 

  • Koedijk, K., Nissen, F., Schotman, P., & Wolff, C. (1997). The dynamics of short-term interest rate volatility. European Finance Review, 1, 105–130.

    Article  Google Scholar 

  • Lo, A. (1988). Maximum likelihood estimation of generalized Itô processes with discretely sampled data. Econometric Theory, 4, 231–247.

    Article  Google Scholar 

  • Perdersen, A. (1995). A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scandinavian Journal of Statistics, 22, 55–71.

    Google Scholar 

  • Shoji, I., & Ozaki, T. (1997). Comparative study of estimation methods for continuous time stochastic processes. Journal of Time Series Analysis, 18(5), 485–506.

    Article  Google Scholar 

  • Shoji, I., & Ozaki, T. (1998). Estimation for nonlinear stochastic differential equations by local linearization method. Stochastic Analysis and Applications, 16(4), 733–752.

    Article  Google Scholar 

  • Thompson, S. (2002). Evaluating the Goodness of Fit of Conditional Distributions, with an Application to Affine Term Structure Models. Working Paper, Harvard University.

    Google Scholar 

  • Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5, 177–188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

7.1.1 Tables: Estimation Results

Table 7.1 Results of estimation and forecast for Germanya
Table 7.2 Results of estimation and forecast for the U.K.a
Table 7.3 Results of estimation and forecast for the U.S.a

7.1.2 The Likelihood Function of the Milstein Approximation

Here we show the derivation of the likelihood function when using the Milstein method. Following (7.3), the dynamic of the SDE (7.1) is approximated by

$$\displaystyle{ X_{t_{i+1}} - X_{t_{i}} = (c -\beta X_{t_{i}})\varDelta t_{i} +\sigma X_{t_{i}}^{\gamma }\varDelta W_{t_{i}} + \frac{1} {2}\sigma ^{2}\gamma X_{ t_{i}}^{2\gamma -1}(\varDelta W_{ t_{i}}^{2} -\varDelta t_{ i}), }$$
(7.14)

where \(\varDelta t_{i} = t_{i+1} - t_{i}\), \(\varDelta W_{t_{i}} = W_{t_{i+1}} - W_{t_{i}}\). Let

$$\displaystyle{Y _{t_{i+1}} = X_{t_{i+1}} - X_{t_{i}} - (c -\beta X_{t_{i}})\varDelta t_{i} + \frac{1} {2}\sigma ^{2}\gamma X_{ t_{i}}^{2\gamma -1}\varDelta t_{ i}.}$$

Then (7.14) becomes

$$\displaystyle{ \frac{1} {2}\sigma ^{2}\gamma X_{ t_{i}}^{2\gamma -1}(\varDelta W_{ t_{i}})^{2} +\sigma X_{ t_{i}}^{\gamma }\varDelta W_{t_{i}} = Y _{t_{i+1}}. }$$
(7.15)

Let \(x_{i} \in \mathbb{R}\) still be the realizations of \(X_{t_{i}}\) and y i be the realizations of \(Y _{t_{i}}\) for i = 0, , N correspondingly. We solve Eq. (7.15) to obtain the realizations of \(\varDelta W_{t_{i}} = u_{i+1}^{+},u_{i+1}^{-}\), where

$$\displaystyle{\begin{array}{rl} u_{i+1}^{+} & = \frac{-1+\sqrt{1+\frac{2\gamma y_{i+1 } } {x_{i}}} } {\sigma \gamma x_{i}^{\gamma -1}} \\ u_{i+1}^{-}& = \frac{-1-\sqrt{1+\frac{2\gamma y_{i+1 } } {x_{i}}} } {\sigma \gamma x_{i}^{\gamma -1}}.\end{array} }$$

Then the conditional density is given by

$$\displaystyle{ \begin{array}{rl} &p\big(X_{t_{i+1}} = x_{i+1}\big\vert X_{t_{i}} = x_{i}\big) = \frac{dP\big(\{\varDelta W_{t_{i}}=du_{i+1}^{+}\}\cup \{\varDelta W_{ t_{i}}=du_{i+1}^{-}\}\big)} {dy_{i+1}} \\ =&\frac{dP\big(\varDelta W_{t_{i}}=du_{i+1}^{+}\big)} {du_{i+1}^{+}} \bigg\vert \frac{du_{i+1}^{+}} {dy_{i+1}} \bigg\vert + \frac{dP\big(\varDelta W_{t_{i}}=du_{i+1}^{-}\big)} {du_{i+1}^{-}} \bigg\vert \frac{du_{i+1}^{-}} {dy_{i+1}} \bigg\vert \\ =& \frac{1} {\sqrt{2\pi \varDelta t_{i}}}\bigg(\exp \big(-\frac{(u_{i+1}^{+})^{2}} {2\varDelta t_{i}} \big) +\exp \big (-\frac{(u_{i+1}^{-})^{2}} {2\varDelta t_{i}} \big)\bigg)\bigg\vert \frac{1} {\sigma x_{i}^{\gamma }\sqrt{1+\frac{2\gamma y_{i+1 } } {x_{i}}} }\bigg\vert, \end{array} }$$
(7.16)

as \(1 + \frac{2\gamma y_{i+1}} {x_{i}}> 0\). If \(1 + \frac{2\gamma y_{i+1}} {x_{i}} <0\), then the density above is infinity. If \(1 + \frac{2\gamma y_{i+1}} {x_{i}} <0\), which means there is no real solution of \(\varDelta W_{t_{i}}\) in (7.15) for such y i+1, therefore the density is equal to zero

$$\displaystyle{p\big(X_{t_{i+1}} = dx_{i+1}\big\vert X_{t_{i}} = x_{i}\big) = 0.}$$

Comparing the density function (7.16) and the density function in (2.5) p. 7 in Elerian (1998), it is not difficult to show the identity of these two functions by some calculation. By numerical operations of the ML estimations we must modify the density function, because when \(1 + \frac{2\gamma y_{i+1}} {x_{i}} = 0\), the value of the density function is infinity. Therefore we apply the following density function for the ML estimations:

$$\displaystyle\begin{array}{rcl} & & g_{mil}(x_{i},x_{i+1},\theta,\varDelta t_{i}) = \frac{dP\big(X_{t_{i+1}} = dx_{i+1}\big\vert X_{t_{i}} = x_{i}\big)} {dx_{i+1}} {}\\ & & = \frac{1} {\sqrt{2\pi \varDelta t_{i}}}\bigg(\exp \big(-\frac{(u_{i+1}^{+})^{2}} {2\varDelta t_{i}} \big) +\exp \big (-\frac{(u_{i+1}^{-})^{2}} {2\varDelta t_{i}} \big)\bigg)\bigg\vert \frac{1} {\sigma x_{i}^{\gamma }\sqrt{1 + \frac{2\gamma y_{i+1 } } {x_{i}}} }\bigg\vert, {}\\ & & \mbox{ for}\,1 + \frac{2\gamma y_{i+1}} {x_{i}}> 10^{-10} {}\\ & & {}\\ & & = 10^{-10}, {}\\ & & \mbox{ otherwise}. {}\\ \end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chiarella, C., Semmler, W., Hsiao, CY., Mateane, L. (2016). Continuous and Discrete Time Modeling. In: Sustainable Asset Accumulation and Dynamic Portfolio Decisions. Dynamic Modeling and Econometrics in Economics and Finance, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49229-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49229-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49228-4

  • Online ISBN: 978-3-662-49229-1

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics