Skip to main content

Continuous Micro-/Nanofluidic Devices for Single-Cell Analysis

  • Chapter
  • First Online:
  • 2251 Accesses

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Micro- and nanofluidic devices are revolutionizing the fields of single-cell analysis, and benefiting related efforts in life science research, agricultural industry, and clinical medicine. These miniaturized devices introduce much desired capabilities in accurate cell and fluid handling, and thus enable quantitative multiparameter and high-throughput approaches to analyze single cells in large numbers, advancing our understanding on how the complex normal and diseased behavior of ensembles of cells emerges from the behavior of each cell or only a few dominating rare cells. The content of this chapter is broadly divided into two parts—single-cell manipulation (SCM) and single-cell analysis (SCA). The first part of the chapter presents state-of-the-art techniques developed to handle single cells, including counting, sorting, positioning, and culturing, which are essential steps in many biological and medical assays. These manipulation techniques are frequently combined with other stimulating and sensing techniques for the observation and characterization of single cells, which are described in the second part of the chapter. Major approaches to probe either intact or lysed single cells, with a special attention on the integration of fluidics and sensor technology, are reviewed. Various operation principles are explained along with pivotal examples demonstrating their applications and perspectives. Droplet-based techniques, although very exciting, are not discussed here due to different sets of technical considerations and performance metrics involved. Techniques providing the access to the intracellular content for sampling or injection of additional compounds are not included here and are covered in Chaps. 3 and 4 of this book, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andersson H, Van Den Berg A (2003) Microfluidic devices for cellomics: a review. Sens Actuators B-Chem 92:315–325

    Article  Google Scholar 

  2. Andersson H, Van Den Berg A (2004) Microtechnologies and nanotechnologies for single-cell analysis. Curr Opin Biotechnol 15:44–49

    Article  Google Scholar 

  3. Autebert J, Coudert B, Bidard F-C et al (2012) Microfluidic: an innovative tool for efficient cell sorting. Methods 57:297–307

    Article  Google Scholar 

  4. AaS Bhagat, Bow H, Hou HW et al (2010) Microfluidics for cell separation. Med Biol Eng Comput 48:999–1014

    Article  Google Scholar 

  5. AaS Bhagat, Hou HW, Li LD et al (2011) Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11:1870–1878

    Article  Google Scholar 

  6. Bocquet L, Charlaix E (2010) Nanofluidics, from bulk to interfaces. Chem Soc Rev 39:1073–1095

    Article  Google Scholar 

  7. Bontoux N, Dauphinot L, Vitalis T et al (2008) Integrating whole transcriptome assays on a lab-on-a-chip for single cell gene profiling. Lab Chip 8:443–450

    Article  Google Scholar 

  8. Branton D, Deamer DW, Marziali A et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Article  Google Scholar 

  9. Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440:358–362

    Article  Google Scholar 

  10. Cemazar J, Miklavcic D, Kotnik T (2013) Microfluidic devices for manipulation, modification and characterization of biological cells in electric fields—a review. Informacije Midem-J Microelectron Electron Compon Mater 43:143–161

    Google Scholar 

  11. Chen C, Lin B-R, Wang H-K et al (2014) Paper-based immunoaffinity devices for accessible isolation and characterization of extracellular vesicles. Microfluid Nanofluid 16:849–856

    Article  Google Scholar 

  12. Chen CC, Folch A (2006) A high-performance elastomeric patch clamp chip. Lab Chip 6:1338–1345

    Article  Google Scholar 

  13. Chen J, Li J, Sun Y (2012) Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 12:1753–1767

    Article  Google Scholar 

  14. Chen W, Weng S, Zhang F et al (2013) Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS Nano 7:566–575

    Article  Google Scholar 

  15. Chen YC, Cheng YH, Kim HS et al (2014) Paired single cell co-culture microenvironments isolated by two-phase flow with continuous nutrient renewal. Lab Chip 14:2941–2947

    Article  Google Scholar 

  16. Cheow LF, Han J (2011) Continuous signal enhancement for sensitive aptamer affinity probe electrophoresis assay using electrokinetic concentration. Anal Chem 83:7086–7093

    Article  Google Scholar 

  17. Cheung KC, Di Berardino M, Schade-Kampmann G et al (2010) Microfluidic Impedance-based flow cytometry. Cytometry Part A 77A:648–666

    Article  Google Scholar 

  18. Cho SH, Chen CH, Tsai FS et al (2010) Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (mu FACS). Lab Chip 10:1567–1573

    Article  Google Scholar 

  19. Choi Y-S, Seo K-W, Lee S-J (2011) Lateral and cross-lateral focusing of spherical particles in a square microchannel. Lab Chip 11:460–465

    Article  Google Scholar 

  20. Conrad C, Gerlich DW (2010) Automated microscopy for high-content RNAi screening. J Cell Biol 188:453–461

    Article  Google Scholar 

  21. Dharmasiri U, Njoroge SK, Witek MA et al (2011) High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Anal Chem 83:2301–2309

    Article  Google Scholar 

  22. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046

    Article  Google Scholar 

  23. Di Carlo D, Aghdam N, Lee LP (2006) Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal Chem 78:4925–4930

    Article  Google Scholar 

  24. Dimov IK, Lu R, Lee EP et al (2014) Discriminating cellular heterogeneity using microwell-based RNA cytometry. Nat Commun 5:3451

    Article  Google Scholar 

  25. Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467:167–173

    Article  Google Scholar 

  26. Fennema E, Rivron N, Rouwkema J et al (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31:108–115

    Article  Google Scholar 

  27. Friend J, Yeo LY (2011) Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 83:647–704

    Article  Google Scholar 

  28. Garza-Licudine E, Deo D, Yu S et al (2010) Portable nanoparticle quantization using a resizable nanopore instrument—the Izon qNano (TM). In: 2010 Annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 5736–5739

    Google Scholar 

  29. Goda K, Ayazi A, Gossett DR et al (2012) High-throughput single-microparticle imaging flow analyzer. Proc Natl Acad Sci USA 109:11630–11635

    Article  Google Scholar 

  30. Gossett DR, Tse HTK, Lee SA et al (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci USA 109:7630–7635

    Article  Google Scholar 

  31. Gossett DR, Weaver WM, Mach AJ et al (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397:3249–3267

    Article  Google Scholar 

  32. Graf T, Stadtfeld M (2008) Heterogeneity of embryonic and adult stem cells. Cell Stem Cell 3:480–483

    Article  Google Scholar 

  33. Guo MT, Rotem A, Heyman JA et al (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12:2146–2155

    Article  Google Scholar 

  34. Hertz HM (1995) Standing-wave acoustic trap for nonintrusive positioning of microparticles. J Appl Phys 78:4845–4849

    Article  Google Scholar 

  35. Hsu CH, Di Carlo D, Chen CC et al (2008) Microvortex for focusing, guiding and sorting of particles. Lab Chip 8:2128–2134

    Article  Google Scholar 

  36. Huang C-J, Lin H-I, Shiesh S-C et al (2010) Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX). Biosens Bioelectron 25:1761–1766

    Article  Google Scholar 

  37. Huang S-B, Wu M-H, Lin Y-H et al (2013) High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force. Lab Chip 13:1371–1383

    Article  Google Scholar 

  38. Hur SC, Henderson-Maclennan NK, Mccabe ERB et al (2011) Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11:912–920

    Article  Google Scholar 

  39. Hur SC, Mach AJ, Di Carlo D (2011) High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5(2):022206

    Article  Google Scholar 

  40. Hur SC, Tse HTK, Di Carlo D (2010) Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10:274–280

    Article  Google Scholar 

  41. Ibey BL, Roth CC, Pakhomov AG et al (2011) Dose-dependent thresholds of 10-ns electric pulse induced plasma membrane disruption and cytotoxicity in multiple cell lines. PLoS ONE 6:e15642

    Article  Google Scholar 

  42. Irish JM, Doxie DB (2014) High-dimensional single-cell cancer biology. In: Fienberg HG, Nolan GP (eds) High-dimensional single cell analysis: mass cytometry, multi-parametric flow cytometry and bioinformatic techniques, pp 1–21

    Google Scholar 

  43. Irish JM, Kotecha N, Nolan GP (2006) Innovation—mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat Rev Cancer 6:146–155

    Article  Google Scholar 

  44. Issadore D, Chung J, Shao HL et al (2012) Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-hall detector. Sci Trans Med 4:141ra92

    Google Scholar 

  45. Juncker D, Schmid H, Delamarche E (2005) Multipurpose microfluidic probe. Nat Mater 4:622–628

    Article  Google Scholar 

  46. Kang DK, Ali MM, Zhang KX et al (2014) Droplet microfluidics for single-molecule and single-cell analysis in cancer research, diagnosis and therapy. Trac-Trends Anal Chem 58:145–153

    Article  Google Scholar 

  47. Kantak C, Chang CP, Wong CC et al (2014) Lab-on-a-chip technology: impacting non-invasive prenatal diagnostics (NIPD) through miniaturisation. Lab Chip 14:841–854

    Article  Google Scholar 

  48. Karimi A, Yazdi S, Ardekani AM (2013) Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7(2):021501

    Article  Google Scholar 

  49. Kim C, Lee KS, Bang JH et al (2011) 3-Dimensional cell culture for on-chip differentiation of stem cells in embryoid body. Lab Chip 11:874–882

    Article  Google Scholar 

  50. Kobel S, Valero A, Latt J et al (2010) Optimization of microfluidic single cell trapping for long-term on-chip culture. Lab Chip 10:857–863

    Article  Google Scholar 

  51. Kozak D, Anderson W, Vogel R et al (2012) Simultaneous size and zeta-potential measurements of individual nanoparticles in dispersion using size-tunable pore sensors. ACS Nano 6:6990–6997

    Article  Google Scholar 

  52. Krishnan M, Mojarad N, Kukura P et al (2010) Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467:692–695

    Article  Google Scholar 

  53. Lee H, Liu Y, Ham D et al (2007) Integrated cell manipulation system—CMOS/microfluidic hybrid. Lab Chip 7:331–337

    Article  Google Scholar 

  54. Lee WG, Ortmann D, Hancock MJ et al (2010) A hollow sphere soft lithography approach for long-term hanging drop methods. Tissue Eng Part C-Methods 16:249–259

    Article  Google Scholar 

  55. Li PCH, Harrison DJ (1997) Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal Chem 69:1564–1568

    Article  Google Scholar 

  56. Lieu VH, House TA, Schwartz DT (2012) Hydrodynamic tweezers: impact of design geometry on flow and microparticle trapping. Anal Chem 84:1963–1968

    Article  Google Scholar 

  57. Lin C-H, Lee D-C, Chang H-C et al (2013) Single-cell enzyme-free dissociation of neurospheres using a microfluidic chip. Anal Chem 85:11920–11928

    Article  Google Scholar 

  58. Lindstrom S, Andersson-Svahn H (2010) Overview of single-cell analyses: microdevices and applications. Lab Chip 10:3363–3372

    Article  Google Scholar 

  59. Liu S-J, Wei H-H, Hwang S-H et al (2010) Dynamic particle trapping, release, and sorting by microvortices on a substrate. Phys Rev E 82:026308

    Article  Google Scholar 

  60. Long BR, Heller M, Beech JP et al (2008) Multidirectional sorting modes in deterministic lateral displacement devices. Phys Rev E 78:046304

    Article  Google Scholar 

  61. Lu J, Barrios CA, Dickson AR et al (2012) Advancing practical usage of microtechnology: a study of the functional consequences of dielectrophoresis on neural stem cells. Integr Biol 4:1223–1236

    Article  Google Scholar 

  62. Menestrina J, Yang C, Schiel M et al (2014) Charged particles modulate local ionic concentrations and cause formation of positive peaks in resistive-pulse-based detection. J Phys Chem C 118:2391–2398

    Article  Google Scholar 

  63. Muratore M, Srsen V, Waterfall M et al (2012) Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy. Biomicrofluidics 6(3):034113

    Article  Google Scholar 

  64. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  Google Scholar 

  65. Nagrath S, Sequist LV, Maheswaran S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239

    Article  Google Scholar 

  66. Park GS, Kwon H, Kwak DW et al (2012) Full surface embedding of gold clusters on silicon nanowires for efficient capture and photothermal therapy of circulating tumor cells. Nano Lett 12:1638–1642

    Article  Google Scholar 

  67. Patel S, Showers D, Vedantam P et al (2012) Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis. Biomicrofluidics 6(3):034102

    Article  Google Scholar 

  68. Pearton SJ, Ren F, Wang YL et al (2010) Recent advances in wide bandgap semiconductor biological and gas sensors. Prog Mater Sci 55:1–59

    Article  Google Scholar 

  69. Pethig R (2010) Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2):022811

    Article  Google Scholar 

  70. Qiu X, De Jesus J, Pennell M et al (2015) Microfluidic device for mechanical dissociation of cancer cell aggregates into single cells. Lab Chip 15:339–350

    Article  Google Scholar 

  71. Rakszewska A, Tel J, Chokkalingam V et al (2014) One drop at a time: toward droplet microfluidics as a versatile tool for single-cell analysis. Npg Asia Mater 6:e133

    Article  Google Scholar 

  72. Rettig JR, Folch A (2005) Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem 77:5628–5634

    Article  Google Scholar 

  73. Roberts GS, Yu S, Zeng Q et al (2012) Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions. Biosens Bioelectron 31:17–25

    Article  Google Scholar 

  74. Robertus J, Browne WR, Feringa BL (2010) Dynamic control over cell adhesive properties using molecular-based surface engineering strategies. Chem Soc Rev 39:354–378

    Article  Google Scholar 

  75. Rosenfeld N, Young JW, Alon U et al (2005) Gene regulation at the single-cell level. Science 307:1962–1965

    Article  Google Scholar 

  76. Sakai Y, Yoshiura Y, Nakazawa K (2011) Embryoid body culture of mouse embryonic stem cells using microwell and micropatterned chips. J Biosci Bioeng 111:85–91

    Article  Google Scholar 

  77. Schmid A, Kortmann H, Dittrich PS et al (2010) Chemical and biological single cell analysis. Curr Opin Biotechnol 21:12–20

    Article  Google Scholar 

  78. Song YX, Yangi JD, Pan XX et al (2015) High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel. Electrophoresis 36:495–501

    Article  Google Scholar 

  79. Sparreboom W, Van Den Berg A, Eijkel JCT (2010) Transport in nanofluidic systems: a review of theory and applications. New J Phys 12:015004

    Article  Google Scholar 

  80. Spiller DG, Wood CD, Rand DA et al (2010) Measurement of single-cell dynamics. Nature 465:736–745

    Article  Google Scholar 

  81. Spudich JL, Koshland DE (1976) Non-genetic individuality—chance in single cell. Nature 262:467–471

    Article  Google Scholar 

  82. Stott SL, Hsu C-H, Tsukrov DI et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci USA 107:18392–18397

    Article  Google Scholar 

  83. Taylor RJ, Falconnet D, Niemisto A et al (2009) Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform. Proc Natl Acad Sci USA 106:3758–3763

    Article  Google Scholar 

  84. Toriello NM, Douglas ES, Thaitrong N et al (2008) Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc Natl Acad Sci USA 105:20173–20178

    Article  Google Scholar 

  85. Tung YC, Hsiao AY, Allen SG et al (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136:473–478

    Article  Google Scholar 

  86. Voldman J, Gray ML, Toner M et al (2002) A microfabrication-based dynamic array cytometer. Anal Chem 74:3984–3990

    Article  Google Scholar 

  87. Wang C, Jalikop SV, Hilgenfeldt S (2011) Size-sensitive sorting of microparticles through control of flow geometry. Appl Phys Lett 99:034101

    Article  Google Scholar 

  88. Wang DJ, Bodovitz S (2010) Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28:281–290

    Article  Google Scholar 

  89. Wang H, Pilla F, Anderson S et al (2012) A novel model of human implantation: 3D endometrium-like culture system to study attachment of human trophoblast (Jar) cell spheroids. Mol Hum Reprod 18:33–43

    Article  Google Scholar 

  90. Waters LC, Jacobson SC, Kroutchinina N et al (1998) Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Anal Chem 70:158–162

    Article  Google Scholar 

  91. Weinberger LS, Burnett JC, Toettcher JE et al (2005) Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122:169–182

    Article  Google Scholar 

  92. White AK, Vaninsberghe M, Petriv OI et al (2011) High-throughput microfluidic single-cell RT-qPCR. Proc Natl Acad Sci USA 108:13999–14004

    Article  Google Scholar 

  93. Willmott GR, Vogel R, Yu SSC et al (2010) Use of tunable nanopore blockade rates to investigate colloidal dispersions. J Phys-Condens Matter 22:454116

    Article  Google Scholar 

  94. Wood DK, Weingeist DM, Bhatia SN et al (2010) Single cell trapping and DNA damage analysis using microwell arrays. Proc Natl Acad Sci USA 107:10008–10013

    Article  Google Scholar 

  95. Wu M-H, Huang S-B, Lee G-B (2010) Microfluidic cell culture systems for drug research. Lab Chip 10:939–956

    Article  Google Scholar 

  96. Chung Yu-Hsiang, Hsiao Yi-Hsing, Kao Wei-Lun et al (2015) Microwells support high-resolution time-lapse imaging and development of preimplanted mouse embryos. Biomicrofluidics 9(2):022407

    Article  Google Scholar 

  97. Zare RN, Kim S (2010) Microfluidic platforms for single-cell analysis. In: Yarmush ML, Duncan JS, Gray ML (eds) Annu Rev Biomed Eng 12:187–201

    Google Scholar 

  98. Zhong JF, Chen Y, Marcus JS et al (2008) A microfluidic processor for gene expression profiling of single human embryonic stem cells. Lab Chip 8:68–74

    Article  Google Scholar 

  99. Zhu HY, Mavandadi S, Coskun AF et al (2011) Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem 83:6641–6647

    Article  Google Scholar 

  100. Zhuang GS, Jensen TG, Kutter JP (2012) Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system. Electrophoresis 33:1715–1722

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihchen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, C. (2016). Continuous Micro-/Nanofluidic Devices for Single-Cell Analysis. In: Tseng, FG., Santra, T. (eds) Essentials of Single-Cell Analysis. Series in BioEngineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49118-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49118-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49116-4

  • Online ISBN: 978-3-662-49118-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics