Advertisement

Stress Fractures in Sport (ICL 5)

  • Nikica DarabosEmail author
  • Mihai Vioreanu
  • Vladan Stevanovic
  • Oskar Zupanc
  • Umile Giusepe Longo
Chapter

Abstract

Stress fractures arise from the inability of bone to tolerate repeated mechanical loading and are characterized by damage to the bone’s micro-architecture. Repeated mechanical loading can cause an uncoupling of osteoblast bone formation and osteoclast bone resorption [1]. This can lead to bone loss and subsequent micro-damage that can result in localized bone weakening, resulting in stress fracture development. The etiology of stress fractures is multifactorial. The rate of occurrence depends on the bone composition, vascular supply, surrounding muscle attachments, systemic factors, and type of athletic activity. From a biomechanical standpoint, stress fractures may be the result of muscle fatigue, which leads to the transmission of excessive forces to the underlying bone. Muscles may also contribute to stress injuries by concentrating forces across a localized area of bone, thus causing mechanical insults that exceed the stress-bearing capacity of the bone (Table 5.1) [2, 3].

Keywords

Femoral Neck Stress Fracture Avascular Necrosis Slip Capital Femoral Epiphysis Stress Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Warden SJ, Burr DB, Brukner PD. Stress fractures: pathophysiology, epidemiology, and risk factors. Curr Osteoporos Rep. 2006;4:103–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Boden BP, Osbahr DC. High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg. 2000;8(6):344–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Bennell K, Matheson G, Meeuwisse W, Brukner P. Risk factors for stress fractures. Sports Med. 1999;28:91–122.CrossRefPubMedGoogle Scholar
  4. 4.
    Tenforde AS, Sayres LC, McCurdy ML, Sainani KL, Fredericson M. Identifying sex specific risk factors for stress fractures in adolescent runners. Med Sci Sports Exerc. 2013;45:1843–51.CrossRefPubMedGoogle Scholar
  5. 5.
    Milner CE, Ferber R, Pollard CD. Biomechanical factors associated with tibial stress fracture in female runners. Med Sci Sports Exerc. 2006;38:323–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Matheson GO, Clement DB, McKenzie DC, et al. Stress fractures in athletes: a study of 320 cases. Am J Sports Med. 1987;03:46–58.CrossRefGoogle Scholar
  7. 7.
    Bennell KL. Epidemiology and site specificity of stress fractures. Clin Sports Med. 1997;16:179–96.CrossRefPubMedGoogle Scholar
  8. 8.
    Boden BP, Osbahr DC, Jimenez C. Low-risk stress fractures. Am J Sports Med. 2001;29:100–11.PubMedGoogle Scholar
  9. 9.
    Sonoda N, Chosa E, Totoribe K, Tajima N. Biomechanical analysis stress fractures of the anterior middle third of the tibia in athletes: nonlinear analysis using a three-dimensional finite elemento method. J Orthop Sci. 2003;8(4):505–13.CrossRefPubMedGoogle Scholar
  10. 10.
    Korpelainen R, Orava S, Karpakka J, Siira P, Hulkko A. Risk factors for recurrent stress fractures in athletes. Am J Sports Med. 2001;29(3):304–10.PubMedGoogle Scholar
  11. 11.
    Monteleone GP. Stress fractures in the athletes. Orthop Clin N Am. 1995;26(3):423–32.Google Scholar
  12. 12.
    Hulkho A, Orava S. Stress fractures in athletes. Int J Sports Med. 1987;8:221–6.CrossRefGoogle Scholar
  13. 13.
    Popovic N, Jalali A, Georis P, et al. Proximal fifth metatarsal diaphyseal stress fracture in football players. Foot Ankle Surg. 2005;11:135–41.CrossRefGoogle Scholar
  14. 14.
    Pearce CJ, Brooks JH, Kemp SP, Calder JD. The epidemiology of foot injuries in professional rugby union players. Foot Ankle Surg. 2011;17(3):113–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Raikin SM, Slenker N, Ratigan B. The association of a varus hindfoot and fracture of the fifth metatarsal metaphyseal-diaphyseal junction: the Jones fracture. Am J Sports Med. 2008;36:1367–72.CrossRefPubMedGoogle Scholar
  16. 16.
    Cain LE, Nicholson LL, Adams RD, Burns J. Foot morphology and foot/ ankle injury in indoor football. J Sci Med Sport. 2007;10(5):311–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Van Meensel AS, Peers K. Navicular stress fracture in high-performing twin brothers: a case report. Acta Orthop Belg. 2010;76:407–12.PubMedGoogle Scholar
  18. 18.
    Lambros G, Alder D. Multiple stress fractures of the tibia in a healthy adult. Am J Orthop. 1997;26:687–8.PubMedGoogle Scholar
  19. 19.
    Loud KJ, Micheli LJ, Bristol S, Austin SB, Gordon CM. Family history predicts stress fracture in active female adolescents. Pediatrics. 2007;120:e364–72.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Varley I, Hughes DC, Greeves JP, Stellingwerff T, Ranson C, Fraser WD, Sale C. RANK/RANKL/OPG pathway: genetic associations with stress fracture period prevalence in elite athletes. Bone. 2015;71:131–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Hosey RG, Fernandez MF, Johnson DL. Evaluation and management of stress fractures of the pelvis and sacrum. Orthopedics. 2015;71:131–6. doi:  10.1016/j.bone.2014.10.004.Epub 2014 Oct 29
  22. 22.
    Pepper M, Akuthota V, McCarty EC. The pathophysiology of stress fractures. Clin Sports Med. 2006;25(1):1–16.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee CH, Huang GS, Chao KH, Jean JL, Wu SS. Surgical treatment of displaced stress fractures of the femoral neck in military recruits: a report of 42 cases. Arch Orthop Trauma Surg. 2003;123(10):527–33.CrossRefPubMedGoogle Scholar
  24. 24.
    Lin JT, Lane JM. Sacral stress fractures. J Womens Health (Larchmt). 2003;12(9):879–88. Bono CM. Low-back pain in athletes. J Bone Jt Surg Am. 2004;86(2):382–96.Google Scholar
  25. 25.
    Kelly EW, Jonson SR, Cohen ME, Shaffer R. Stress fractures of the pelvis in female navy recruits: an analysis of possible mechanisms of injury. Mil Med. 2000;165(2):142–6.PubMedGoogle Scholar
  26. 26.
    Shaffer RA, Rauh MJ, Brodine SK, Trone DW, Macera CA. Predictors of stress fracture susceptibility in young female recruits. Am J Sports Med. 2006;34(1):108–15.CrossRefPubMedGoogle Scholar
  27. 27.
    Bennell KL, Malcolm SA, Thomas SA, Wark JD, Brukner PD. The incidence and distribution of stress fractures in competitive track and field athletes. A twelve month prospective study. Am J Sports Med. 1996;24(2):211–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Yeager KK, Agostini R, Nattiv A, Drinkwater B. The female athlete triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc. 1993;25(7):775–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Kelsey JL, Bachrach LK, Procter-Gray E, et al. Risk factor for stress fracture among young female cross-country runners. Med Sci Sports Exerc. 2007;29(9):1457–63.CrossRefGoogle Scholar
  30. 30.
    Beck TJ, Ruff CB, Mourtada FA, et al. Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits. J Bone Miner Res. 1996;11(5):645–53.CrossRefPubMedGoogle Scholar
  31. 31.
    Egol KA, Koval KJ, Kummer F, Frankel VH. Stress fractures of the femoral neck. Clin Orthop Relat Res. 1998;348:72–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Jones BH, Harris JM, Vinh TN, Rubin C. Exercise-induced stress fractures and stress reactions of bone: epidemiology, etiology, and classification. Exerc Sport Sci Rev. 1989;17(1):379–422.PubMedGoogle Scholar
  33. 33.
    Pavlov H, Nelson TL, Warren RF, Torg JS, Burstein AH. Stress fractures of the pubic ramus. A report of twelve cases. J Bone Joint Surg Am. 1982;64(7):1020–5.PubMedGoogle Scholar
  34. 34.
    Major NM, Helms CA. Pelvic stress injuries: the relationship between osteitis pubis (symphysis pubis stress injury) and sacroiliac abnormalities in athletes. Skelet Radiol. 1997;26(12):711–7.CrossRefGoogle Scholar
  35. 35.
    Miller C, Major N, Toth A. Pelvic stress injuries in the athlete. Management and prevention. Sports Med. 2003;33(13):1003–12.CrossRefPubMedGoogle Scholar
  36. 36.
    Fricker PA, Taunton JE, Ammann W. Osteitis pubis in athletes: infection, inflammation or injury? Sports Med. 1991;12(4):266–79.CrossRefPubMedGoogle Scholar
  37. 37.
    Johnson AW, Weiss Jr CB, Stento K, Wheeler DL. Stress fractures of the sacrum. An atypical cause of low back pain in the female athlete. Am J Sports Med. 2001;29(4):498–508.PubMedGoogle Scholar
  38. 38.
    Sofka CM. Imaging of stress fractures. Clin Sports Med. 2006;25:53–62.CrossRefPubMedGoogle Scholar
  39. 39.
    Fredericson M, Moore W, Biswal S. Sacral stress fractures: magnetic resonance imaging not always definitive for early stage injuries: a report of 2 cases. Am J Sports Med. 2007;35(5):835–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Weistroffer JK, Muldoon MP, Duncan DD, Fletcher EH, Padgett DE. Femoral neck stress fractures: outcome analysis at minimum five-year follow-up. J Orthop Trauma. 2003;17(5):334–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Carpintero P, Leon F, Zafra M, et al. Stress fractures of the femoral neck and coxa vara. Arch Orthop Trauma Surg. 2003;123(6):273–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Armstrong 3rd DW, Rue JP, Wilckens JH, Frassica FJ. Stress fracture injury in young military men and women. Bone. 2004;35(3):806–16.CrossRefPubMedGoogle Scholar
  43. 43.
    Raasch WG, Hergan DJ. Treatment of stress fractures: the fundamentals. Clin Sports Med. 2006;25(1):29–36.CrossRefPubMedGoogle Scholar
  44. 44.
    Darabos N, Vlahović I. Surgical treatment of a femoral neck stress fracture without endocrinal comorbidity in an amateur sportswoman. Acta Chir Croat. 2015;12:37–41.Google Scholar
  45. 45.
    Iwamoto J, Takeda T. Stress fractures in athletes: review of 196 cases. J Orthop Sci. 2003;8:273–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Tuan K, Wu S, Sennett B. Stress fractures in athletes: risk factors, diagnosis and management. Orthopaedics. 2004;27:583–91.Google Scholar
  47. 47.
    Knapp T, Garrett W. Stress fractures: general concepts. Clin Sports Med. 1997;16:339–56.CrossRefPubMedGoogle Scholar
  48. 48.
    Deutch A, Coel M, Mink J. Imaging of stress injuries to bone. Clin Sports Med. 1996;16:275–90.CrossRefGoogle Scholar
  49. 49.
    Batt ME, Kemp S, Kerslake R. Delayed union stress fractures of anterior tibia conservative management. Br J Sports Med. 2001;35(1):74–7.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Chang PS, Hariss RM. Intramedullary nailing for chronic tibial stress fracture. Am J Sports Med. 1996;24(5):688–92.CrossRefPubMedGoogle Scholar
  51. 51.
    Maffulli N, Longo UG, Gougoulias N, Caine D, Denaro V. Sport injuries: a review of outcomes. Br Med Bull. 2011;97:47–80.CrossRefPubMedGoogle Scholar
  52. 52.
    Gehrmann RM, Renard RL. Current concepts review: stress fractures of the foot. Foot Ankle Int. 2006;27:750–7.PubMedGoogle Scholar
  53. 53.
    Maitra RS, Johnson DL. Stress fractures clinical history and physical examination. Clin Sports Med. 1997;16:260–74.CrossRefGoogle Scholar
  54. 54.
    Maffulli N, Longo UG, Spiezia F, Denaro V. Aetiology and prevention of injuries in elite young athletes. Med Sport Sci. 2011;56:187–200.CrossRefPubMedGoogle Scholar
  55. 55.
    Beck BR, Matheson GO, Bergman G, et al. Do capacitively coupled electric fields accelerate tibial stress fracture healing? A randomized controlled trial. Am J Sports Med. 2008;36:545–53.CrossRefPubMedGoogle Scholar
  56. 56.
    Benazzo F, Mosconi M, Beccarisi G, Galli U. Use of capacitative coupled electric fields in stress fractures in athletes. Clin Orthop Relat Res. 1995;310:145–9.PubMedGoogle Scholar
  57. 57.
    Busse JW, Kaur J, Mollon B, et al. Low intensity pulsed ultrasonography for fractures: systematic review of randomized controlled trials. BMJ. 2009;27:338–51.Google Scholar
  58. 58.
    Khan Y, Laurencin CT. Fracture repair with ultrasound: clinical and cell based evaluation. J Bone Joint Surg Am. 2008;90 suppl 1:S138–44.CrossRefGoogle Scholar
  59. 59.
    Li J, Waugh LJ, Hui SL, Warden SJ. Low-intensity pulsed ultrasound and nonsteroidal anti-inflammatory drugs have opposing effects during stress fracture repair. J Orthop Res. 2007;25:1559–67.CrossRefPubMedGoogle Scholar
  60. 60.
    Rue JP, Armstrong III DW, Frassica FJ, Deafenbaugh M, Wilckens JH. The effect of pulsed ultrasound in the treatment of tibial stress fractures. Orthopedics. 2004;27:1192–5.PubMedGoogle Scholar
  61. 61.
    Barrett JG, Sample SJ, McCarthy J, Kalsheur VL, Muir P, Prokuski L. Effect of short-term treatment with alendronate on ulnar bone adaptation to cyclic fatigue loading in rats. J Orthop Res. 2007;25:1070–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Finestone A, Milgrom C. How stress fracture incidence was lowered in the Israeli army: a 25-year struggle. Med Sci Sports Exerc. 2008;40 suppl 11:S630–5.CrossRefPubMedGoogle Scholar
  63. 63.
    Voss LA, Fadale PD, Hulstyn MJ. Exercise-induced loss of bone density in athletes. J Am Acad Orthop Surg. 1998;6:349–57.CrossRefPubMedGoogle Scholar
  64. 64.
    Nieves JW, Melsop K, Curtis M, et al. Nutritional factors that influence change in bone density and stress fracture risk among young female crosscountry runners. PM R. 2010;2:740–50.CrossRefPubMedGoogle Scholar
  65. 65.
    Ruffing JA, Cosman F, Zion M, et al. Determinants of bone mass and bone size in a large cohort of physically active young adult men. Nutr Metab (Lond). 2006;15:3–14.Google Scholar
  66. 66.
    McCormick JJ, Bray CC, Davis WH, Cohen BE, Jones CP, Anderson RB. Clinical and computed tomography evaluation of surgical outcomes in tarsal navicular stress fractures. Am J Sports Med. 2011;39:1741–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Maffulli N, Longo UG, Spiezia F, Denaro V. Sports injuries in young athletes: long-term outcome and prevention strategies. Phys Sports Med. 2010;38(2):29–34.CrossRefGoogle Scholar
  68. 68.
    Maffulli N, Longo UG, Gougoulias N, Loppini M, Denaro V. Long-term health outcomes of youth sports injuries. Br J Sports Med. 2010;44(1):21–5.CrossRefPubMedGoogle Scholar
  69. 69.
    Saxena A, Krisdakumtorn T. Return to activity after sesamoidectomy in athletically active individuals. Foot Ankle Int. 2003;24:415–9.PubMedGoogle Scholar
  70. 70.
    Biedert R, Hintermann B. Stress fractures of the medial great toe sesamoids in athletes. Foot Ankle Int. 2003;24:137–41.PubMedGoogle Scholar
  71. 71.
    Blundell CM, Nicholson P, Blackney MW. Percutaneous screw fixation for fractures of the sesamoid bones of the hallux. J Bone Joint Surg (Br). 2002;84:1138–41.CrossRefGoogle Scholar
  72. 72.
    Anderson RB, McBryde Jr AM. Autogenous bone grafting of hallux sesamoid nonunions. Foot Ankle Int. 1997;18:293–6.CrossRefPubMedGoogle Scholar
  73. 73.
    Darabos N, Obrovac K, et al. Combined surgical therapy and orthotic management of stress and tuberosity avulsion fracture of the fifth metatarsal bone. JAPMA. 2009;99(6):529–35.Google Scholar

Copyright information

© ESSKA 2016

Authors and Affiliations

  • Nikica Darabos
    • 1
    Email author
  • Mihai Vioreanu
    • 2
  • Vladan Stevanovic
    • 3
    • 4
  • Oskar Zupanc
    • 5
  • Umile Giusepe Longo
    • 6
  1. 1.General, Orthopaedic and Traumatology Surgeon, Department of Sports TraumatologyClinic for Traumatology, Clinical Hospital Center Sisters of Charity Medical School, University of ZagrebZagrebCroatia
  2. 2.Consultant Orthopaedic SurgeonKnee and Hip Specialist, Sports Surgery ClinicSantry, Dublin 9Ireland
  3. 3.Orthopaedic Surgeon, Faculty of MedicineUniversity of BelgradeBelgradeSerbia
  4. 4.Institute for Orthopedic Surgery “Banjica”BelgradeSerbia
  5. 5.Orthopaedic Surgeon, Department of Orthopaedic SurgeryLjubljana University Medical CentreLjubljanaSlovenia
  6. 6.Department of Trauma and Orthopaedic SurgeryUniversity Campus Bio-Medico of RomeRomaItaly

Personalised recommendations