Optic Nerve Head and RNFL Imaging: Comparison of Technologies

  • Kouros Nouri-MahdaviEmail author
  • Carlos Souza
  • Joseph Caprioli


Each optic nerve imaging technology has its unique strengths and weaknesses.


Optic nerve imaging Confocal scanning laser ophthalmoscopy Optical coherence tomography (OCT) Scanning laser polarimetry (SLP) Imaging Glaucoma Optic nerve head Optic disc Neuroretinal rim Retinal nerve fiber layer Scanning laser ophthalmoscopy Heidelberg retina tomograph (HRT) 


  1. 1.
    Sommer A, Miller NR, Pollack I, Maumenee AE, George T. The nerve fiber layer in the diagnosis of glaucoma. Arch Ophthalmol. 1977;95(12:2149–56.CrossRefPubMedGoogle Scholar
  2. 2.
    Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982;100(1):135–46.CrossRefPubMedGoogle Scholar
  3. 3.
    Zeyen TG, Caprioli J. Progression of disc and field damage in early glaucoma. Arch Ophthalmol. 1993;111(1):62–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Zangwill LM, Bowd C, Berry CC, et al. Discriminating between normal and glaucomatous eyes using the Heidelberg retina tomograph, GDx Nerve Fiber Analyzer, and optical coherence tomograph. Arch Ophthalmol. 2001;119(7):985–93.CrossRefPubMedGoogle Scholar
  5. 5.
    Greaney MJ, Hoffman DC, Garway-Heath DF, Nakla M, Coleman AL, Caprioli J. Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. Invest Ophthalmol Vis Sci. 2002;43(1):140–5.PubMedGoogle Scholar
  6. 6.
    Coops A, Henson DB, Kwartz AJ, Artes PH. Automated analysis of Heidelberg retina tomograph optic disc images by glaucoma probability score. Invest Ophthalmol Vis Sci. 2006;47(12):5348–55.CrossRefPubMedGoogle Scholar
  7. 7.
    Reus NJ, de Graaf M, Lemij HG. Accuracy of GDx VCC, HRT I, and clinical assessment of stereoscopic optic nerve head photographs for diagnosing glaucoma. Br J Ophthalmol. 2007;91(3):313–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Strouthidis NG, Garway-Heath DF. New developments in Heidelberg retina tomograph for glaucoma. Curr Opin Ophthalmol. 2008;19(2):141–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Lemij HG, Reus NJ. New developments in scanning laser polarimetry for glaucoma. Curr Opin Ophthalmol. 2008;19(2):136–40.CrossRefPubMedGoogle Scholar
  10. 10.
    Kostanyan T, Wollstein G, Schuman JS. New developments in optical coherence tomography. Curr Opin Ophthalmol. 2015;26(2):110–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Deleon-Ortega JE, Arthur SN, McGwin Jr G, Xie A, Monheit BE, Girkin CA. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. Invest Ophthalmol Vis Sci. 2006;47(8):3374–80.CrossRefPubMedGoogle Scholar
  12. 12.
    Zangwill LM, Jain S, Racette L, et al. The effect of disc size and severity of disease on the diagnostic accuracy of the Heidelberg retina tomograph glaucoma probability score. Invest Ophthalmol Vis Sci. 2007;48(6):2653–60.CrossRefPubMedGoogle Scholar
  13. 13.
    Harizman N, Zelefsky JR, Ilitchev E, Tello C, Ritch R, Liebmann JM. Detection of glaucoma using operator-dependent versus operator-independent classification in the Heidelberg retinal tomograph-III. Br J Ophthalmol. 2006;90(11):1390–2.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ferreras A, Pablo LE, Larrosa JM, Polo V, Pajarin AB, Honrubia FM. Discriminating between normal and glaucoma-damaged eyes with the Heidelberg Retina Tomograph 3. Ophthalmology. 2008;115(5):775–81 e772.CrossRefPubMedGoogle Scholar
  15. 15.
    He L, Ren R, Yang H, et al. Anatomic vs. acquired image frame discordance in spectral domain optical coherence tomography minimum rim measurements. PLoS One. 2014;9(3):e92225.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gardiner SK, Ren R, Yang H, Fortune B, Burgoyne CF, Demirel S. A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area. Am J Ophthalmol. 2014;157(3):540–9.e541–2.CrossRefPubMedGoogle Scholar
  17. 17.
    Chauhan BC, Burgoyne CF. From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. Am J Ophthalmol. 2013;156(2):218–27 e212.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vizzeri G, Weinreb RN, Martinez de la Casa JM, et al. Clinicians agreement in establishing glaucomatous progression using the Heidelberg retina tomograph. Ophthalmology. 2009;116(1):14–24.CrossRefPubMedGoogle Scholar
  19. 19.
    O’Leary N, Crabb DP, Mansberger SL, et al. Glaucomatous progression in series of stereoscopic photographs and Heidelberg retina tomograph images. Arch Ophthalmol. 2010;128(5):560–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Strouthidis NG, White ET, Owen VM, Ho TA, Hammond CJ, Garway-Heath DF. Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements. Br J Ophthalmol. 2005;89(11):1427–32.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Poli A, Strouthidis NG, Ho TA, Garway-Heath DF. Analysis of HRT images: comparison of reference planes. Invest Ophthalmol Vis Sci. 2008;49(9):3970–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol. 1995;113(5):586–96.CrossRefPubMedGoogle Scholar
  23. 23.
    Drexler W, Fujimoto JG. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res. 2008;27(1):45–88.CrossRefPubMedGoogle Scholar
  24. 24.
    Sung KR, Sun JH, Na JH, Lee JY, Lee Y. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology. 2012;119(2):308–13.CrossRefPubMedGoogle Scholar
  25. 25.
    Vizzeri G, Weinreb RN, Gonzalez-Garcia AO, et al. Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol. 2009;93(6):775–81.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kim JS, Ishikawa H, Gabriele ML, et al. Retinal nerve fiber layer thickness measurement comparability between time domain optical coherence tomography (OCT) and spectral domain OCT. Invest Ophthalmol Vis Sci. 2010;51(2):896–902.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chen CL, Ishikawa H, Ling Y, et al. Signal normalization reduces systematic measurement differences between spectral-domain optical coherence tomography devices. Invest Ophthalmol Vis Sci. 2013;54(12):7317–22.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Leite MT, Rao HL, Zangwill LM, Weinreb RN, Medeiros FA. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology. 2011;118(7):1334–9.PubMedGoogle Scholar
  29. 29.
    Lisboa R, Paranhos A, Weinreb RN, Zangwill LM, Leite MT, Medeiros FA. Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2013;54(5):3417–25.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mwanza JC, Budenz DL, Godfrey DG, et al. Diagnostic performance of optical coherence tomography ganglion cell—inner plexiform layer thickness measurements in early glaucoma. Ophthalmology. 2014;121(4):849–54.CrossRefPubMedGoogle Scholar
  31. 31.
    Mwanza JC, Oakley JD, Budenz DL, Anderson DR, Cirrus Optical Coherence Tomography Normative Database Study G. Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology. 2011;118(2):241–8 e241.CrossRefPubMedGoogle Scholar
  32. 32.
    Chauhan BC, O’Leary N, Almobarak FA, et al. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology. 2013;120(3):535–43.CrossRefPubMedGoogle Scholar
  33. 33.
    Hwang YH, Kim YY. Glaucoma diagnostic ability of quadrant and clock-hour neuroretinal rim assessment using cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(4):2226–34.CrossRefPubMedGoogle Scholar
  34. 34.
    Nilforushan N, Nassiri N, Moghimi S, et al. Structure-function relationships between spectral-domain OCT and standard achromatic perimetry. Invest Ophthalmol Vis Sci. 2012;53(6):2740–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Medeiros FA, Zangwill LM, Bowd C, Mansouri K, Weinreb RN. The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. Invest Ophthalmol Vis Sci. 2012;53(11):6939–46.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pinto LM, Costa EF, Melo Jr LA, et al. Structure-function correlations in glaucoma using matrix and standard automated perimetry versus time-domain and spectral-domain OCT devices. Invest Ophthalmol Vis Sci. 2014;55(5):3074–80.CrossRefPubMedGoogle Scholar
  37. 37.
    Danthurebandara VM, Sharpe GP, Hutchison DM, et al. Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement. Invest Ophthalmol Vis Sci. 2015;56(1):98–105.CrossRefGoogle Scholar
  38. 38.
    Garas A, Vargha P, Hollo G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology. 2010;117(4):738–46.CrossRefPubMedGoogle Scholar
  39. 39.
    Mwanza JC, Chang RT, Budenz DL, et al. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrusTM HD-OCT in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2010;51(11):5724–30.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Matlach J, Wagner M, Malzahn U, Göbel W. Repeatability of peripapillary retinal nerve fiber layer and inner retinal thickness among two spectral domain optical coherence tomography devices. Invest Ophthalmol Vis Sci. 2014;55(10):6536–46.CrossRefPubMedGoogle Scholar
  41. 41.
    Francoz M, Fenolland JR, Giraud JM, et al. Reproducibility of macular ganglion cell-inner plexiform layer thickness measurement with cirrus HD-OCT in normal, hypertensive and glaucomatous eyes. Br J Ophthalmol. 2014;98(3):322–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Kim KE, Yoo BW, Jeoung JW, Park KH. Long-term reproducibility of macular ganglion cell analysis in clinically stable glaucoma patients. Invest Ophthalmol Vis Sci. 2015.Google Scholar
  43. 43.
    Weinreb RN. Evaluating the retinal nerve fiber layer in glaucoma with scanning laser polarimetry. Arch Ophthalmol. 1999;117(10):1403–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Medeiros FA, Bowd C, Zangwill LM, Patel C, Weinreb RN. Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci. 2007;48(7):3146–53.CrossRefPubMedGoogle Scholar
  45. 45.
    Mai TA, Reus NJ, Lemij HG. Structure-function relationship is stronger with enhanced corneal compensation than with variable corneal compensation in scanning laser polarimetry. Invest Ophthalmol Vis Sci. 2007;48(4):1651–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Bowd C, Tavares IM, Medeiros FA, Zangwill LM, Sample PA, Weinreb RN. Retinal nerve fiber layer thickness and visual sensitivity using scanning laser polarimetry with variable and enhanced corneal compensation. Ophthalmology. 2007;114(7):1259–65.CrossRefPubMedGoogle Scholar
  47. 47.
    Nouri-Mahdavi K, Nowroozizadeh S, Nassiri N, et al. Macular ganglion cell/inner plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements. Am J Ophthalmol. 2013;156(6):1297–307.e1292.CrossRefPubMedGoogle Scholar
  48. 48.
    Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res. 2007;26(6):688–710.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Na JH, Sung KR, Baek S, et al. Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(7):3817–26.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kouros Nouri-Mahdavi
    • 1
    Email author
  • Carlos Souza
    • 2
  • Joseph Caprioli
    • 3
  1. 1.Jules Stein Eye InstituteDavid Geffen School of Medicine, University of California at Los AngelesLos AngelesUSA
  2. 2.Department of OphthalmologyFederal University of Sao PauloSao PauloBrazil
  3. 3.Stein Eye InstituteDavid Geffen School of Medicine, University of CaliforniaLos AngelesUSA

Personalised recommendations